E-Book, Englisch, 588 Seiten
Conn Neuropeptide Technology
1. Auflage 2013
ISBN: 978-1-4832-6813-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Gene Expression and Neuropeptide Receptors
E-Book, Englisch, 588 Seiten
ISBN: 978-1-4832-6813-2
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Methods in Neurosciences, Volume 5: Neuropeptide Technology: Gene Expression and Neuropeptide Receptors discusses procedures and tools of assay useful for the identification, purification, and quantification of neuropeptides and their receptors. This volume is divided into two sections-neuropeptide gene expression and neuropeptide receptors. In these sections, this book specifically discusses the assays for peptide products of somatostatin gene expression; molecular assays for rat thyrotropin-releasing hormone gene; and structure, expression, and chromosomal localization of human gene. The gastrin-releasing peptide or mammalian bombesin; semiquantitative analysis of cellular somatostatin mRNA Levels; and atrial natriuretic factor receptor assays are also elaborated. This text likewise covers the receptors for opioid peptides in brain and autoradiography of somatostatin receptors in rat cerebellum. This publication is beneficial to neuroscientists and students intending to acquire knowledge of gene expression and neuropeptide receptors.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Neuropeptide Technology: Gene Expression and Neuropeptide Receptors;4
3;Copyright Page;5
4;Table of Contents;6
5;Contributors to Volume 5;10
6;Preface;16
7;Methods in Neurosciences;18
8;Section I: Neuropeptide Gene Expression;20
8.1;Chapter 1. Assays for Peptide Products of Somatostatin Gene Expression;22
8.1.1;Introduction;22
8.1.2;Methods for Detection of Products of Prosomatostatin;24
8.1.3;Extraction of Precursor Products from Tissue;32
8.1.4;Isolation of Prosomatostatin-Derived Peptide;36
8.1.5;References;39
8.2;Chapter 2. Assay of Atrial Natriuretic Factor Messenger Ribonucleic Acid;41
8.2.1;Introduction;41
8.2.2;Principle;42
8.2.3;Materials;42
8.2.4;Reagents;43
8.2.5;RNA Preparation and Denaturation;43
8.2.6;RNA Dot-Blot Single-Step Method;44
8.2.7;Multiple Hybridizations;47
8.2.8;Results and Discussion;48
8.2.9;Conclusion;52
8.2.10;Acknowledgments;52
8.2.11;References;52
8.3;Chapter 3. Molecular Assays for Rat Thyrotropin- Releasing Hormone Gene;53
8.3.1;Introduction;53
8.3.2;Northern Blot Analysis of RNA Derived from Micropunches of Brain Tissue;54
8.3.3;Analysis of TRH Regulatory Sequences by Gene Transfer and Transient Expression Assays;64
8.3.4;Acknowledgments;70
8.3.5;References;70
8.4;Chapter 4. Assays for Corticotropin-Releasing Hormone and Vasopressin Messenger RNAs;71
8.4.1;Introduction;71
8.4.2;Isolation of mRNA;71
8.4.3;Quantitation of mRNA;75
8.4.4;Structural Analysis of CRH and VP mRNA;81
8.4.5;Acknowledgments;91
8.4.6;References;91
8.5;Chapter 5. Motilin: Structure, Expression, and Chromosomal Localization of Human Gene;92
8.5.1;Introduction;92
8.5.2;Materials and Methods;93
8.5.3;Results and Discussion;98
8.5.4;Acknowledgments;102
8.5.5;References;102
8.6;Chapter 6. Progonadotropin-Releasing Hormone Synthesis and Processing: Measurements of mRNA and Peptides;104
8.6.1;Introduction;104
8.6.2;Methodology;104
8.6.3;Summary of Physiological Findings and Future Directions;124
8.6.4;Acknowledgments;125
8.6.5;References;126
8.7;Chapter 7. Use of Firefly Luciferase Reporter Gene to Study Angiotensinogen Acute Phase Response Element;127
8.7.1;Introduction;127
8.7.2;Materials and Methods;128
8.7.3;Applications;133
8.7.4;Conclusions;140
8.7.5;Acknowledgments;141
8.7.6;References;141
8.8;Chapter 8. Cell-Specific Localization of Neuropeptide Gene Expression: Gastrin-Releasing Peptide or Mammalian Bombesin;142
8.8.1;Introduction;142
8.8.2;Principles;143
8.8.3;In Situ Hybridization;144
8.8.4;Immunoperoxidase Analyses;150
8.8.5;Quantitation of Results;153
8.8.6;Comments;153
8.8.7;Acknowledgments;154
8.8.8;References;154
8.9;Chapter 9. Semiquantitative Analysis of Cellular Somatostatin mRNA Levels by in Situ Hybridization Histochemistry;156
8.9.1;Introduction;156
8.9.2;In Situ Hybridization Histochemistry;156
8.9.3;Controls;160
8.9.4;Measurement of Autoradiographic Silver Grains;163
8.9.5;Performance of Grain-Counting System;166
8.9.6;Other Factors Affecting Performance;170
8.9.7;Comparison of in Situ Hybridization with Other Analytical Techniques;171
8.9.8;Limitations of in Situ Hybridization;176
8.9.9;Acknowledgments;177
8.9.10;References;177
8.10;Chapter 10. Measurement of Oxytocin and Vasopressin Gene Expression by in Situ Hybridization;178
8.10.1;Introduction;178
8.10.2;General Precautions Regarding Hybridization;179
8.10.3;Tissue Preparation;179
8.10.4;Probe Selection and Labeling;181
8.10.5;Hybridization;184
8.10.6;Specificity Controls;187
8.10.7;Autoradiography;189
8.10.8;Photometric Measurements on Autoradiographic Films;194
8.10.9;Comments and Discussion;198
8.10.10;Acknowledgments;200
8.10.11;References;200
9;Section II: Neuropeptide Receptors: Ligands, Solubilization, Localization, Assays;202
9.1;Chapter 11. Solubilization of Vasopressin Receptors;204
9.1.1;Introduction;204
9.1.2;Methods;205
9.1.3;Acknowledgments;210
9.1.4;References;210
9.2;Chapter 12. Soluble Angiotensin II-Binding Protein;211
9.2.1;Assay;211
9.2.2;Purification;212
9.2.3;Properties;216
9.2.4;Function;221
9.2.5;References;221
9.3;Chapter 13. Purification of Neurotensin Receptor from Newborn Mouse Brain by Affinity Chromatography;222
9.3.1;Introduction;222
9.3.2;Preliminary Choices;223
9.3.3;Solubilization;223
9.3.4;Characterization of Crude Soluble Receptor;225
9.3.5;Purification;227
9.3.6;Structural and Functional Properties of Purified Receptor;231
9.3.7;Conclusion;232
9.3.8;References;233
9.4;Chapter 14. Purification of Somatostatin Receptors;234
9.4.1;Introduction;234
9.4.2;Somatostatin Receptor Solubilization;235
9.4.3;Solubilized Somatostatin Receptors Coupled to G Proteins;236
9.4.4;Purification of Somatostatin Receptor;239
9.4.5;Conclusions;242
9.4.6;Acknowledgments;242
9.4.7;References;243
9.5;Chapter 15. Assay for Galanin Receptor;244
9.5.1;Introduction;244
9.5.2;lodination of Porcine Galanin and Analysis of Labeled Peptides: Preparation of Mono-125I-Labeled [Tyr26]Galanin;245
9.5.3;Binding Assay: Characterization of Receptor Distribution and Ligand Affinities;246
9.5.4;References;252
9.6;Chapter 16. Direct Radioligand Measurement of Oxytocin Receptors in Anterior Pituitary Gland;254
9.6.1;Introduction;254
9.6.2;Methodology;254
9.6.3;Characteristics of Binding Reaction with Crude Particulate Fractions;256
9.6.4;Conclusions;260
9.6.5;References;261
9.7;Chapter 17. Tachykinin Receptors: Binding and Cellular Activity Assays;262
9.7.1;Introduction;262
9.7.2;NK2 Receptors;266
9.7.3;NK3 Receptors;267
9.7.4;Techniques;268
9.7.5;References;283
9.8;Chapter 18. Assays for Secretin Receptors: Comparison between Neuroblastoma Cells and Exocrine Pancreas;286
9.8.1;Introduction;286
9.8.2;Materials and Methods;289
9.8.3;Results;295
9.8.4;Acknowledgments;302
9.8.5;References;302
9.9;Chapter 19. In Vivo Bioassays of Central Vasopressin V1 Receptors Using Fever as a Model;304
9.9.1;Introduction;304
9.9.2;Rationale and Experimental Approach;305
9.9.3;Surgical Preparation;306
9.9.4;Experimental Procedures;307
9.9.5;Conclusions;317
9.9.6;Acknowledgments;318
9.9.7;References;319
9.10;Chapter 20. Assays of Bombesin Receptors;320
9.10.1;Introduction;320
9.10.2;Bombesin Receptor Radioligands;320
9.10.3;Homogenate Receptor Binding;325
9.10.4;Cellular Receptor Binding;326
9.10.5;Autoradiographic Receptor Binding;327
9.10.6;References;329
9.11;Chapter 21. Angiotensin Receptor Assay and Characterization;331
9.11.1;Introduction;331
9.11.2;Angiotensin Receptor Ligands;331
9.11.3;Tissue and Cell Preparations;333
9.11.4;Receptor Assay;335
9.11.5;Photoaffinity Labeling and Chemical Cross-Linking;344
9.11.6;Autoradiography and Computerized Densitometry;345
9.11.7;Summary;345
9.11.8;References;346
9.12;Chapter 22. Receptor Assays for Neurokinins, Tachykinins, and Bombesins;350
9.12.1;Introduction;350
9.12.2;Assay Methods for Neurokinin Receptors;353
9.12.3;Assay Methods for Bombesins;361
9.12.4;References;369
9.13;Chapter 23. Synthesis of 125I-Labeled ß-Melanotropin and Assay of Melanotropin Receptors;373
9.13.1;Introduction;373
9.13.2;Synthesis of 125I-Labeled Hormone;374
9.13.3;Binding Studies;376
9.13.4;Summary;379
9.13.5;References;379
9.14;Chapter 24. Assays for Vasoactive Intestinal Peptide Receptor;381
9.14.1;Introduction;381
9.14.2;Defining Optimal Binding Conditions for Viable Cells;382
9.14.3;Determination of Number and Affinity of VIP Binding Sites;385
9.14.4;Data Analysis;386
9.14.5;Confirmation of Specificity of Receptor;391
9.14.6;Adherent Cell Monolayers;391
9.14.7;Estimation of .D, Bmax, and Specificity in Membranes;392
9.14.8;Solubilization of VIP Receptor;395
9.14.9;Cross-linking of VIP to VIP Receptor;397
9.14.10;Materials;400
9.14.11;References;402
9.15;Chapter 25. Assays for d-Opioid Receptor;404
9.15.1;Introduction;404
9.15.2;Prototypical Ligands for Opioid Receptors;405
9.15.3;Preparation of Rat Brain Membrane Homogenates;407
9.15.4;Saturation Binding Experiments;408
9.15.5;Displacement Experiments;412
9.15.6;Kinetics Experiments;417
9.15.7;In Vitro Autoradiography;419
9.15.8;Conclusion;421
9.15.9;References;421
9.16;Chapter 26. Assays for Substance P and Tachykinin Receptors;423
9.16.1;Introduction;423
9.16.2;Autoradiographic Localization of Tachykinin Receptor Binding Sites;424
9.16.3;Homogenate Receptor Binding for Tachykinin Receptor Binding Sites;429
9.16.4;Second Messenger Responses to Tachykinin Receptor Activation;430
9.16.5;Combining Protocols for Binding, Second Messengers, and Functional Responses to Demonstrate the Presence of a Functional Tachykinin Receptor;431
9.16.6;Summary;443
9.16.7;Acknowledgments;443
9.16.8;References;443
9.17;Chapter 27. Identification and Characterization of Neuromedin B Receptors in Rat Central Nervous System;445
9.17.1;Introduction;445
9.17.2;Preparation of Tracers;447
9.17.3;Receptor Binding Methods;449
9.17.4;References;459
9.18;Chapter 28. Atrial Natriuretic Factor Receptor Assays;460
9.18.1;Introduction;460
9.18.2;Preparation of Mono[125I]iodotyrosine Derivative of Atrial Natriuretic Factor;461
9.18.3;Autoradiography;463
9.18.4;Binding Assay;468
9.18.5;Molecular Cross-linking Studies of Atrial Natriuretic Factor Receptors;471
9.18.6;Atrial Natriuretic Factor Receptor Subtypes;474
9.18.7;Comments;474
9.18.8;Acknowledgments;475
9.18.9;References;475
9.19;Chapter 29. Receptors for Opioid Peptides in Brain;478
9.19.1;Introduction;478
9.19.2;Ligand Binding to Opioid Receptors;478
9.19.3;Receptor Autoradiography;487
9.19.4;References;497
9.20;Chapter 30. Ligands for Cholecystokinin A and Cholecystokinin B/Gastrin Receptors;498
9.20.1;Introduction;498
9.20.2;Radioligand Binding Assays for CCK/Gastrin Receptors;498
9.20.3;Comparison of in Vitro Binding Potencies of Various Antagonists in Inhibiting [125I]CCK Binding to CCK-A and CCK-B/Gastrin Receptors;500
9.20.4;Kinetics of Inhibition of [125I]CCK Binding by CCK-A- and CCK-B-Selective Antagonists;502
9.20.5;Specificity of CCK-A and CCK-B Antagonists;504
9.20.6;In Vitro Functional Activities of CCK-A and CCK-B/Gastrin Antagonists;505
9.20.7;In Vivo Activities and Specificity of CCK-A and CCK-B /Gastrin Antagonists;506
9.20.8;[3H](±)L-364,718 and [3H]L-365,260 as Radioligands for CCK-A and CCK-B Receptors;507
9.20.9;References;510
9.21;Chapter 31. Radioiodinated Ligands in Assays for Neurotensin and Enkephalin Receptors;512
9.21.1;Introduction;512
9.21.2;Iodine-125;513
9.21.3;Radioiodination;514
9.21.4;Purification of Radioiodinated Peptides;515
9.21.5;In Vitro Radioreceptor Assays;519
9.21.6;Receptor Autoradiography;521
9.21.7;Acknowledgments;527
9.21.8;References;527
9.22;Chapter 32. Biochemical, Pharmacological, and Autoradiographic Methods to Study Corticotropin-Releasing Factor Receptors;529
9.22.1;Introduction;529
9.22.2;Radioligand Binding Methods;529
9.22.3;Chemical Affinity Cross-linking Techniques;535
9.22.4;Biochemical Characteristics of CRF Receptors;538
9.22.5;Receptor Mapping Techniques;545
9.22.6;Future Methodologies for Studying CRF Receptors;550
9.22.7;References;554
9.23;Chapter 33. Autoradiography of Somatostatin Receptors in Rat Cerebellum;557
9.23.1;Introduction;557
9.23.2;Material and Chemicals;558
9.23.3;Methodology;559
9.23.4;Comments: Controls and Limits;571
9.23.5;References;572
10;Index;574
Contributors to Volume 5
Gail K. Adler, (4), Division of Endocrinology, The Children’s Hospital, Harvard Medical School, Boston, Massachusetts 02115
Nambi Aiyar, (11), Department of Pharmacology, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania 19406
F.A. Antoni, (16), MRC Brain Metabolism Unit, University Department of Pharmacology, Edinburgh, EH8 9J2, Scotland
Tamas Bartfai, (15), Department of Biochemistry, Arrhenius Laboratories for Natural Sciences, University of Stockholm, S-106 91 Stockholm, Sweden
Jean-Claude Beaujouan, (17), Neuropharmacologie, Collège de France, INSERM U114, 75231 Paris Cedex 05, France
Katarina Bedecs, (15), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
M. Bersani, (1), Institute of Medical Physiology C, The Pannum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
Martha A. Bosch, (6), Department of Physiology, Oregon Health Sciences University, Portland, Oregon 97201
Allan R. Brasier, (7), Department of Molecular Endocrinology, Massachusetts General Hospital, and Howard Hughes Medical Institute, Harvard Medical School, Boston, Massachusetts, 02114
Christine Bucharles, (33), Groupe de Recherche en Endocrinologie Moléculaire, Université de Rouen, CNRS URA650, 76134 Mont-Saint-Aignan Cedex, France
Laura B. Campolito, (24), Department of Pediatrics and Immunology, Ohio State University, Columbus, Ohio 43205
Joëlle Chabry, (13), Institut de Pharmacologic Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, 06560 Valbonne, France
S.E. Chadio, (16), Department of Anatomy and Physiology of Domestic Animals, Agricultural University of Athens, IERA odos 75, Athens, 11855 Greece
Raymond S.L. Chang, (30), Department of New Lead Pharmacology, Merck Sharp and Dohme Research Laboratories, West Point, Pennsylvania 19486
Julie A. Chowen, (9), Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195
Jean Christophe, (18), Department of Biochemistry and Nutrition, Université Libre de Bruxelles, Medical School, B-1000 Brussels, Belgium
Donald K. Clifton, (9), Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington 98195
Stanley T. Crooke, (11), ISIS Pharmaceuticals, Carlsbad, California 92008
A.J. Cross, (29), Astra Neuroscience Research Unit, London, WC1N 1PJ, England
Errol B. De Souza, (32), E. I. du Pont de Nemours & Company, Medical Products Department, Experimental Station, E400/4352, Wilmington, Delaware 19880
Monika Dietl, (17), Neuropharmacologie, Collège de France, INSERM U114, 75231 Paris Cedex 05, France
Roger P. Dilts, (31), Department of Anatomy and Cell Biology, East Carolina University School of Medicine, Greenville, North Carolina 27858
S. Dion, (22), Department of Pharmacology, University of Texas, Medical School, Houston, Texas 77225
Isabelle Dubus, (2), INSERM Unité 127, Hôpital Lariboisière, 75010 Paris, France
J.M. Felix, (10), Institut de Physiologie, Université Louis Pasteur, F67084 Strasbourg Cedex, France
R. Fernandez-Durango, (28), Diabetes Unit, Hospital Universitario San Carlos, Faculty of Medicine, 28040 Madrid, Spain
Gilberto Fisone, (15), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Steven J. Fluharty, (12), Department of Pharmacology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
Jacques Glowinski, (17), Neuropharmacologie, Collège de France, INSERM U114, 75231 Paris Cedex 05, France
Bruno Gonzalez, (33), Groupe de Recherche en Endocrinologie Moléculaire, Université de Rouen, CNRS URA 650, 76134 Mont-Saint-Aignan Cedex, France
Denis Gossen, (18), Department of Biochemistry and Nutrition, Université Libre de Bruxelles, Medical School, B-1000 Brussels, Belgium
Dimitri E. Grigoriadis, (32), E. I. du Pont de Nemours & Company, Medical Products Department, Experimental Station, E400/4352, Wilmington, Delaware 19880
J. Gutkowska, (28), Clinical Research Institute of Montreal, Laboratory of the Biochemistry of Hypertension, Montreal, Quebec H2W 1R7, Canada
J.J. Holst, (1), Institute of Medical Physiology C, The Pannum Institute, University of Copenhagen, DK-2200 Copenhagen N, Denmark
Robert T. Jensen, (27), Digestive Disorders Branch, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
Norman W. Kasting, (19), Department of Physiology, University of British Columbia, Vancouver, BC V6T 1W5, Canada
Martin J. Kelly, (6), Department of Physiology, Oregon Health Sciences University, Portland, Oregon 97201
M. A. Ravi Kiron, (12), Department of Medicine and Biochemistry, The New York Hospital, Cornell University Medical College, New York, New York 10021
Ellen E. Ladenheim, (27), Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
Tiit Land, (15), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Ülo Langel, (15), Department of Biochemistry, Tartu University, Tartu, Estonia
F.M. Laurent-Huck, (10), Institut de Physiologie, Université Louis Pasteur, F67084 Strasbourg Cedex, France
Susan F. Law, (14), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Stephanie L. Lee, (3), Division of Endocrinology, New England Medical Center Hospitals, Boston, Massachusetts 02111
Philippe...




