E-Book, Englisch, 414 Seiten
Conn Neuropeptide Analogs, Conjugates, and Fragments
1. Auflage 2013
ISBN: 978-1-4832-1753-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Methods in Neurosciences, Vol. 13
E-Book, Englisch, 414 Seiten
ISBN: 978-1-4832-1753-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Methods in Neurosciences, Volume 13: Neuropeptide Analogs, Conjugates, and Fragments covers the synthesis and characterization of peptide analogs, conjugates, and fragments, their use as ligands for receptors, and their role in the development and use of antisera. The book discusses techniques such as novel synthetic approaches; biotinylation; purification and characterization; radioligand techniques and assay development; use of agonists and antagonists; distinguishing receptor subtypes; conjugation to carrier proteins; antiidiotypic antibody development; and radiolabeling. Neuroscientists, biochemists, neurochemists, and pharmacologists will find the book useful.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Neuropeptide Analogs,
Conjugates, and Fragments;4
3;Copyright Page;5
4;Table of Contents;6
5;Contributors to Volume 13;10
6;Preface;16
7;Methods in Neurosciences;18
8;Section I: Synthesis and Characterization;20
8.1;Chapter 1. Synthetic Approaches to Incorporation of Novel Amino Acids into Gonadotropin-Releasing Hormone Peptides;22
8.1.1;Introduction;22
8.1.2;[NMeTyr5,DLeu6,Pro9NHEt]GnRH;22
8.1.3;Synthesis of [NMeTyr5,DLeu6,Pro9NHEt]GnRH ;23
8.1.4;Purification and Characterization of [NMeTyr5,DLeu6,Pro9NHEt]GnRH ;25
8.1.5;Synthesis, Purification, and Characterization of [NMeSer4,DLeu6,Pro9NHEt]GnRH ;28
8.1.6;Synthesis, Purification, and Characterization of [NMeSer4,D2Nal6]GnRH;28
8.1.7;Comments on Syntheses of Agonists Containing Na-Methyl in Backbone;29
8.1.8;Hexapeptide Reduced Size Analogs;29
8.1.9;Synthesis, Purification, and Characterization of [N-(3-Indolylpropionyl)Ser4,DSer6,Pro9NHEt]GnRH(4–9) ;30
8.1.10;Synthesis, Purification, and Characterization of [N-(3-Indolylpropionyl)Ser4,DLys6,Pro9NHEt]GnRH(4–9);31
8.1.11;Synthesis, Purification, and Characterization of [N-(3-Indolylpropionyl)Ser4,DLys(Nic)6,Pro9NHEt]GnRH(4–9)and [N-(3-Indolylpropionyl)Ser4,DLys(Pic)6,Pro9NHEt]GnRH(4–9) ;31
8.1.12;Synthesis, Purification, and Characterization of [7V-(3-Indolylpropionyl)Ser4,DLys(Isp)6,Pro9NHEt]GnRH(4–9);32
8.1.13;Comments about Syntheses of Hexapeptide Reduced Size GnRH Analogs;32
8.1.14;Appendix: Equipment, Materials, and Methods;34
8.1.15;Acknowledgments;36
8.1.16;References;36
8.2;Chapter 2. Synthesis of Pseudopeptides;38
8.2.1;Introduction;38
8.2.2;Synthesis of Pseudodipeptide Units;40
8.2.3;Incorporation of terf-Butyloxycarbonyl-Protected Pseudodipeptides within Peptide Analogs;44
8.2.4;Experimental;45
8.2.5;Characterization of Pseudopeptides by Chemical and Physical Methods;53
8.2.6;Acknowledgments;59
8.2.7;References;59
8.3;Chapter 3. Synthesis and Synthetic Manipulations of Peptides Derived from Parathyroid Hormoneand Parathyroid Hormone-Related Protein;62
8.3.1;Introduction;62
8.3.2;Chemical Synthesis;63
8.3.3;Synthesis of Parathyroid Hormone-Related Protein Peptides;67
8.3.4;Synthesis of Substituted Analogs of Parathyroid Hormone and Parathyroid Hormone-Related Protein;68
8.3.5;Synthesis of Radioligands;72
8.3.6;Parathyroid Hormone Analogs: Affinity and Photoaffinity Ligands;78
8.3.7;Recombinant DNA Techniques;86
8.3.8;Random Mutagenesis of Parathyroid Hormone Sequence;90
8.3.9;Conclusions;91
8.3.10;References;91
8.4;Chapter 4. Biotinylated Neuropeptide Analogs:Design and Use as Probes for Target Cellsin Heterogeneous Populations;95
8.4.1;Introduction;95
8.4.2;Biotin–Avidin Complex;96
8.4.3;Peptide Analogs Designed for Biotinylation;97
8.4.4;Design Strategies;98
8.4.5;Addition of Biotin to Designer Peptide;99
8.4.6;Separation of Biotinylated Products;100
8.4.7;Chemical Characterization of Biotinylated Peptides;101
8.4.8;Examples;101
8.4.9;Peptide Design and Biotinylation;107
8.4.10;Use of Biotinylated Peptides as Probes for Target Cells;107
8.4.11;Conclusion;108
8.4.12;Acknowledgments;108
8.4.13;References;108
8.5;Chapter 5. Peptide Characterization and Purification Using High-Performance Liquid Chromatography;110
8.5.1;Introduction;110
8.5.2;Reversed-Phase Chromatography;110
8.5.3;Size-Exclusion Chromatography;117
8.5.4;Ion-Exchange Chromatography;120
8.5.5;Development of Peptide Purification Strategy;121
8.5.6;Summary;124
8.5.7;Acknowledgments;125
8.5.8;References;125
9;Section II: Development and Use of Receptor Ligands;126
9.1;Chapter 6. Atrial Natriuretic Factors and Fragments;128
9.1.1;Introduction;128
9.1.2;Measurement;128
9.1.3;Reagents and Solutions;130
9.1.4;Sample Preparation;131
9.1.5;High-Performance Liquid Chromatography;131
9.1.6;Radioimmunoassay;133
9.1.7;Comments;133
9.1.8;References;134
9.2;Chapter 7. Atrial Natriuretic Factor Bindingto Clearance Receptorsin Isolated Neuronal Membranes;136
9.2.1;Introduction;136
9.2.2;Methods;136
9.2.3;Results;140
9.2.4;Discussion;142
9.2.5;Acknowledgments;144
9.2.6;References;145
9.3;Chapter 8. Biotinylated Endothelin Analogs as Probes for Endothelin Receptor;146
9.3.1;Introduction;146
9.3.2;Synthesis and Chemical Characterization of Biotinylated Endothelins;146
9.3.3;Binding Properties of Biotinylated Endothelins;150
9.3.4;Utilization of Avidin–Biotin Complex for Receptor Purificationand Identification;152
9.3.5;Application of Avidin–Biotin Technique for Visualization of Endothelin Receptors;154
9.3.6;Conclusions;156
9.3.7;Acknowledgments;156
9.3.8;References;156
9.4;Chapter 9. Analogs of Endothelin;158
9.4.1;Introduction;158
9.4.2;Conformational Studies of Endothelins and Endothelin Analogs;160
9.4.3;Biochemical Studies of Endothelins and Endothelin Analogs;168
9.4.4;Effects of Endothelins and Endothelin Analogs on Blood Vesselsin Vitro;177
9.4.5;References;181
9.5;Chapter 10. Selective Cholecystokinin Aand Cholecystokinin B/Gastrin Receptor Agonists;183
9.5.1;Introduction;183
9.5.2;Radioligand Binding Assays;184
9.5.3;Functional Assays;186
9.5.4;Results and Discussion;189
9.5.5;References;193
9.6;Chapter 11. Tachykinin Receptor Antagonists;195
9.6.1;Tachykinins: Biological Actions and Receptors;195
9.6.2;Methodologies for Study of Tachykinin Receptor Ligands;196
9.6.3;Tachykinin Receptor Antagonists;198
9.6.4;Conclusions;205
9.6.5;Acknowledgments;205
9.6.6;References;205
9.7;Chapter 12. Somatostatin Receptor Subtypes in Rat Brain Revealed by Somatostatin Analogs;209
9.7.1;Introduction;209
9.7.2;Identification of Somatostatin Receptor Subtype-Selective Compounds;210
9.7.3;Functional Properties of Somatostatin Receptor Subtypes;215
9.7.4;Pharmacology of Cloned Somatostatin Receptors;216
9.7.5;Acknowledgments;217
9.7.6;References;217
9.8;Chapter 13. Thyrotropin-Releasing Hormone: Analogs and Receptors;218
9.8.1;Introduction;218
9.8.2;Materials and Methods;219
9.8.3;Summary and Conclusions;234
9.8.4;References;236
9.9;Chapter 14. Distinguishing Bombesin Receptor Subtypes;239
9.9.1;Introduction;239
9.9.2;Ligand Binding to Discriminate Bombesin Receptor Subtypes;240
9.9.3;Expression of Receptor mRNA in Xenopus Oocytes;245
9.9.4;RNA Analysis to Determine Distribution of Expression of Receptor mRNA;249
9.9.5;References;256
9.10;Chapter 15. Bombesin Receptor Subtypes:Characterization and Solubilization;257
9.10.1;Introduction;257
9.10.2;Binding Studies;259
9.10.3;Solubilization and Characterization of Bombesin Receptors;270
9.10.4;Acknowledgments;275
9.10.5;References;275
9.11;Chapter 16. Nonpeptide Angiotensin II Receptor Antagonist: Losartan;277
9.11.1;Introduction;277
9.11.2;Medicinal Chemistry;278
9.11.3;Characterizing Angiotensin Receptor Antagonists;284
9.11.4;Characterizing Angiotensin Receptor Blockade in Vivo;289
9.11.5;Bioavailability;292
9.11.6;Clinical Evaluation;292
9.11.7;Summary;294
9.11.8;Acknowledgments;294
9.11.9;References;294
9.12;Chapter 17. Vla Vasopressin Receptors:Selective Biotinylated Probes;300
9.12.1;Introduction;300
9.12.2;Methods and Results;301
9.12.3;Conclusion;314
9.12.4;Acknowledgments;314
9.12.5;References;315
9.13;Chapter 18. Vl a Vasopressin Receptors: Studies with Radioiodinated Ligand;316
9.13.1;Introduction;316
9.13.2;Techniques;317
9.13.3;Evaluation of Biological Properties of New Radiolabeled Ligand;322
9.13.4;References;325
9.14;Chapter 19. Pharmacological Identification of Vasopressin Receptors in Isolated Renal Tubule;327
9.14.1;Introduction;327
9.14.2;Experimental Procedures;331
9.14.3;Comments;335
9.14.4;Acknowledgments;347
9.14.5;References;347
10;Section III: Development and Use of Antisera;350
10.1;Chapter 20. Neuropeptide Conjugation to Carrier Proteins;352
10.1.1;Introduction;352
10.1.2;Conjugation of Neuropeptides to Carriers;353
10.1.3;Analyzing Neuropeptide Conjugates;360
10.1.4;Procedures;362
10.1.5;Acknowledgments;369
10.1.6;References;369
10.2;Chapter 21. Antiidiotypic Thyrotropin-Releasing Hormone Antibody;371
10.2.1;Introduction;371
10.2.2;Immunization with Immunoglobulin from Antithyrotropin-Releasing Hormone Antiserum;371
10.2.3;Immunoprecipitation of Thyrotropin-Releasing Hormone Receptors by Antiidiotypic Antibody;373
10.2.4;Sodium Dodecyl Sulfate–Polyacrylamide Gel Electrophoresis and Western Blotting Analysis of Thyrotropin-Releasing Hormone Receptors;374
10.2.5;Comparison with Northern Blotting Analysis of Thyrotropin-Releasing Hormone Receptors;377
10.2.6;References;377
10.3;Chapter 22. 125I-Labeled Substance P: Influence of Oxidation State on Sensitivity of Radioimmunoassay;379
10.3.1;Introduction;379
10.3.2;Materials and Reagents;381
10.3.3;Experimental Procedures;383
10.3.4;Results and Comments;390
10.3.5;Concluding Remarks;400
10.3.6;Acknowledgments;401
10.3.7;References;402
11;Index;404
Contributors to Volume 13
Abderrahim Ammar, (19), Laboratoire de Physiologie Cellulaire, Collége de France, Paris, France
Peter A. Anton, (4), Department of Medicine, IBD Research and Clinical Center, Center for the Health Sciences, University of California, Los Angeles, Los Angeles, California 90024
Sylvie Audigier, (18), CNRS-INSERM de Pharmacologie-Endocrinologie, 34094 Montpellier, France
Marie-Noelle Balestre, (18), CNRS-INSERM de Pharmacologie-Endocrinologie, 34094 Montpellier, France
Claude Barberis, (18), CNRS-INSERM de Pharmacologie-Endocrinologie, 34094 Montpellier, France
James Battey, (14), Laboratory of Biological Chemistry, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892
Bruce R. Bianchi, (10), Neuroscience Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064
Daniel Butlen, (19), Laboratoire de Physiologie Cellulaire, Collége de France, Paris, France
David J. Carini, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Michael P. Caulfield, (3), Calcium Metabolism, Nichols Institute, San Juan Capistrano, California 92690
Andrew T. Chiu, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Michael Chorev, (3), Department of Pharmaceutical Chemistry, The Hebrew University School of Pharmacy, Jerusalem, 91120 Israel
David D. Christ, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Hinrich Cramer, (22), Department of Neurology, Neurochemical Laboratory, University of Freiburg, D-7800 Freiburg, Germany
Jörg Czekalla, (20), Rheinische Landes- und Hochschulklinik für Psychiatrie, D-4300 Essen 1, Germany
John V. Duncia, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Thierry Durroux, (18), CNRS-INSERM de Pharmacologie-Endocrinologie, 34094 Montpellier, France
Barbara J. Elmquist, (7), Department of Pharmacology, University of Minnesota School of Medicine, Duluth, Minnesota 55812
Timothy D. Fitzpatrick, (1), Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064
J.-P. Gies, (15), Laboratoire de Neuroimmunopharmacologie, INSERM CJF 9105, Université Louis Pasteur Strasbourg I, 67401 Illkirch, France
Isabella M. Grumbach, (20), AG Elektronenmikroskopie und Chemische Neuroanatomie, Zentrum für Molekulare Neurobiologie, D-2000 Hamburg, Germany
Hans-Werner Habbes, (20), Abteilung für Neuroanatomie, Institut für Anatomie, Ruhr-Universität Bochum, D-4630 Bochum, Germany
El-Bdaoui Haddad, (15), Laboratoire de Neuroimmunopharmacologie, INSERM CJF 9105, Université Louis Pasteur Strasbourg I, 67401 Illkirch, France
Fortuna Haviv, (1), Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064
Eli Hazum, (8), Bio-Technology General, Kiryat Weizmann, Rehovot, 76326 Israel
William F. Herblin, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Robin C. Hiley, (9), Department of Pharmacology, University of Cambridge, Cambridge CB2 1QJ, England
John Howl, (17), School of Biochemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, England
Tadashi Inagami, (6), Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
Serge Jard, (18), CNRS-INSERM de Pharmacologie-Endocrinologie, 34094 Montpellier, France
Robert Jensen, (14), Digestive Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892
Yoshikazu Kambayashi, (6), Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
E. Lach, (15), Laboratoire de Neuroimmunopharmacologie, INSERM CJF 9105, Université Louis Pasteur Strasbourg I, 67401 Illkirch, France
Robert J. Lee, (16), The DuPont Merck Pharmaceutical Co., Experimental Station, Wilmington, Delaware 19880
Chun Wel Lin, (10), Neuroscience Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064
Carlo Alberto Maggi, (11), Department of Pharmacology, Smooth Muscle Division, A. Menarini Pharmaceuticals, 1-50131 Florence, Italy
Maurice Manning, (18), Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo, Ohio 43699
Karl-Heinz Meyer, (20), Medizinische Universitätsklinik, Bergmannsheil Bochum, D4630 Bochum, Germany
Robert C. Miller, (9), Department of Pharmacology, Marion Merrell Dow Research Institute, Strasbourg Research Center, 67000 Strasbourg, France
Thomas R. Miller, (10), Neuroscience Research, Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, Illinois 60064
Masatomo Mori, (21), First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371, Japan
John T. Pelton, (9), Department of Biophysics, Marion Merrell Dow Research Institute, Strasbourg Research Center, 67009 Strasbourg, France
Hoang T. Pham, (20), Abteilung für Neuroanatomie, Institut für Anatomie, Ruhr-Universität Bochum, D-4630 Bochum, Germany
Karen Raynor, (12), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Joseph R. Reeve, JR., (4), Department of Medicine, IBD Research and Clinical Center, Center for the Health Sciences, University of California, Los Angeles, Los Angeles, California 90024
Terry Reisine, (12), Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
Klaus Rissler, (22), Dr. G. Friedrich Pharmbiodyn, Institute of Contract Research, D-7819 Denzlingen, Germany
Tetsurou Satoh, (21), First Department of Internal Medicine, Gunma University School of Medicine, Maebashi 371, Japan
Wilbur H. Sawyer, (18), Department of...




