Congdon | Bayesian Hierarchical Models | Buch | 978-1-032-17715-1 | sack.de

Buch, Englisch, 592 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1101 g

Congdon

Bayesian Hierarchical Models

With Applications Using R, Second Edition
2. Auflage 2021
ISBN: 978-1-032-17715-1
Verlag: Chapman and Hall/CRC

With Applications Using R, Second Edition

Buch, Englisch, 592 Seiten, Format (B × H): 178 mm x 254 mm, Gewicht: 1101 g

ISBN: 978-1-032-17715-1
Verlag: Chapman and Hall/CRC


An intermediate-level treatment of Bayesian hierarchical models and their applications, this book demonstrates the advantages of a Bayesian approach to data sets involving inferences for collections of related units or variables, and in methods where parameters can be treated as random collections. Through illustrative data analysis and attention to statistical computing, this book facilitates practical implementation of Bayesian hierarchical methods.

The new edition is a revision of the book Applied Bayesian Hierarchical Methods. It maintains a focus on applied modelling and data analysis, but now using entirely R-based Bayesian computing options. It has been updated with a new chapter on regression for causal effects, and one on computing options and strategies. This latter chapter is particularly important, due to recent advances in Bayesian computing and estimation, including the development of rjags and rstan. It also features updates throughout with new examples.

The examples exploit and illustrate the broader advantages of the R computing environment, while allowing readers to explore alternative likelihood assumptions, regression structures, and assumptions on prior densities.

Features:

- Provides a comprehensive and accessible overview of applied Bayesian hierarchical modelling

- Includes many real data examples to illustrate different modelling topics

- R code (based on rjags, jagsUI, R2OpenBUGS, and rstan) is integrated into the book, emphasizing implementation

- Software options and coding principles are introduced in new chapter on computing

- Programs and data sets available on the book’s website

Congdon Bayesian Hierarchical Models jetzt bestellen!

Zielgruppe


Professional


Autoren/Hrsg.


Weitere Infos & Material


Contents

Preface

1. Bayesian Methods for Complex Data: Estimation and Inference

2. Bayesian Analysis Options in R, and Coding for BUGS, JAGS, and Stan

3. Model Fit, Comparison, and Checking

4. Borrowing Strength via Hierarchical Estimation

5. Time Structured Priors

6. Representing Spatial Dependence

7. Regression Techniques Using Hierarchical Priors

8. Bayesian Multilevel Models

9. Factor Analysis, Structural Equation Models, and Multivariate Priors

10. Hierarchical Models for Longitudinal Data

11. Survival and Event History Models

12. Hierarchical Methods for Nonlinear and Quantile Regression


Peter Congdon is Research Professor in Quantitative Geography and Health Statistics at Queen Mary, University of London.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.