Comninellis / Chen | Electrochemistry for the Environment | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 563 Seiten

Comninellis / Chen Electrochemistry for the Environment


1. Auflage 2009
ISBN: 978-0-387-68318-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 563 Seiten

ISBN: 978-0-387-68318-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Wastewater treatment technology is undergoing a profound transformation due to the fundamental changes in regulations governing the discharge and disposal of h- ardous pollutants. Established design procedures and criteria, which have served the industry well for decades, can no longer meet the ever-increasing demand. Toxicity reduction requirements dictate in the development of new technologies for the treatment of these toxic pollutants in a safe and cost-effective manner. Fo- most among these technologies are electrochemical processes. While electrochemical technologies have been known and utilized for the tre- ment of wastewater containing heavy metal cations, the application of these p- cesses is only just a beginning to be developed for the oxidation of recalcitrant organic pollutants. In fact, only recently the electrochemical oxidation process has been rec- nized as an advanced oxidation process (AOP). This is due to the development of boron-doped diamond (BDD) anodes on which the oxidation of organic pollutants is mediated via the formation of active hydroxyl radicals.

This 350 pages volume contains the contributions from 18 international experts on the key topics concerning environmental chemistry. It is co-edited by Dr. Chen and Prof. Comninellis. Dr. Chen has been working actively in this field for nearly 10 years and is currently an Editor of Separation and Purification Technology. Professor Comninellis is an international authority on environmental electrochemistry with over 30 years of experiences. He is the Chairman of the Electrochemical Process Division of  the International Society of Electrochemistry.

Comninellis / Chen Electrochemistry for the Environment jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Contributors;9
4;1 Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment;12
4.1;1.1 Introduction;12
4.2;1.2 Thermodynamics of the Electrochemical Mineralization;13
4.3;1.3 Mechanism of the Electrochemical Mineralization;16
4.3.1;1.3.1 Activation of Water by Dissociative Adsorption;17
4.3.2;1.3.2 Activation of Water by Electrolytic Discharge;17
4.4;1.4 Influence of Anode Material on the Reactivity of Electrolytic Hydroxyl Radicals;18
4.5;1.5 Determination of the Current Efficiency of the Electrochemical Mineralization;20
4.5.1;1.5.1 Determination of ICE by the Chemical Oxygen Demand Technique;21
4.5.2;1.5.2 Determination of ICE by the Oxygen Flow Rate Technique;22
4.6;1.6 Kinetic Model of Organics Mineralization on BDD Anode;22
4.6.1;1.6.1 Influence of the Nature of Organic Pollutants;26
4.6.2;1.6.2 Influence of Organic Concentration;27
4.6.3;1.6.3 Influence of Applied Current Density;27
4.7;1.7 Intermediates Formed During the Electrochemical Mineralization Process Using BDD;28
4.8;1.8 Electrical Energy Consumption in the Electrochemical Mineralization Process;30
4.9;1.9 Optimization of the Electrochemical Mineralization Using BDD Anodes;30
4.10;1.10 Fouling and Corrosion of BDD Anodes;32
4.11;References;32
5;2 Importance of Electrode Material in the Electrochemical Treatment of Wastewater Containing Organic Pollutants;35
5.1;2.1 Introduction;35
5.2;2.2 Electrochemical Parameters;36
5.3;2.3 Oxidation Mechanisms;37
5.4;2.4 Electrode Materials;40
5.4.1;2.4.1 Carbon and Graphite;40
5.4.2;2.4.2 Platinum;43
5.4.3;2.4.3 Dimensionally Stable Anodes;45
5.4.4;2.4.4 Tin Dioxide;49
5.4.5;2.4.5 Lead Dioxide;51
5.4.6;2.4.6 Boron-Doped Diamond;52
5.5;2.5 Conclusions;57
5.6;References;58
6;3 Techniques of Electrode Fabrication;65
6.1;3.1 Thermal Decomposition Method;65
6.1.1;3.1.1 Ruthenium-Oxide-Based Electrode (RuOx);68
6.1.2;3.1.2 Iridium-Oxide-Based Electrode (IrO2);68
6.1.3;3.1.3 Tin-Dioxide-Based Electrode (SnO2);69
6.1.4;3.1.4 Tantalum-Oxide-Based Electrode (Ta2 O5);71
6.1.5;3.1.5 Rhodium-Oxide-Based Electrode (RhOx);72
6.2;3.2 Chemical Vapor Deposition (CVD);72
6.3;3.3 Surface Modifications;83
6.3.1;3.3.1 Metal Film Deposition;83
6.3.2;3.3.2 Metal Ion Implantation;84
6.3.3;3.3.3 Electrochemical Activation;84
6.3.4;3.3.4 Organic Surface Coating;84
6.3.5;3.3.5 Nanoparticle Deposition;85
6.3.6;3.3.6 GOx Enzyme-Modified Electrode;87
6.3.6.1;3.3.6.1 Chemical Deposition;87
6.3.6.2;3.3.6.2 Sol--Gel Method;89
6.3.6.3;3.3.6.3 Electrochemical Deposition;89
6.3.7;3.3.7 DNA-Modified Electrode;89
6.4;3.4 Ultramicro- or Nanoscale Electrode;90
6.5;3.5 Concluding Remarks;95
6.6;References;96
7;4 Modeling of Electrochemical Process for the Treatment of Wastewater Containing Organic Pollutants;109
7.1;4.1 Why Is It Important to Use Mathematical Modeling in Electrochemical Wastewater Treatment?;109
7.2;4.2 Mathematical Modeling in Chemical Engineering;110
7.3;4.3 Selection of the Description Level in Electrochemical Coagulation and Oxidation Processes;112
7.4;4.4 Constitutive Equations for Electrochemical Oxidation and Coagulation Processes;117
7.4.1;4.4.1 Mass-Transfer Processes;117
7.4.2;4.4.2 Electrochemical Processes;118
7.4.3;4.4.3 Chemical Processes;120
7.5;4.5 Electrochemical Oxidation Models;121
7.5.1;4.5.1 A Single-Variable Model to Describe the Time-Course of the COD During Electrochemical Oxidation Processes;122
7.5.2;4.5.2 A Multivariable Model to Describe the Time Course of Pollutant, Intermediates, and Final Products During Electrochemical Oxidation Processes;123
7.6;4.6 Electrochemical Coagulation Models;128
7.6.1;4.6.1 A Single-Variable Model to Describe Electrochemical Coagulation Controlled by Hydrodynamic Conditions;128
7.6.2;4.6.2 A Multivariable Model to Describe Electrochemical Coagulation Based on Pseudoequilibrium Approaches;129
7.6.3;4.6.3 A Multivariable Model to Describe Electrochemical Dissolution Processes;130
7.7;4.7 Conclusions;133
7.8;References;133
8;5 Green Electroorganic Synthesis Using BDD Electrodes;135
8.1;5.1 Introduction;135
8.2;5.2 Experimental Equipment and Practical Aspects;137
8.3;5.3 Anodic Transformations;138
8.3.1;5.3.1 Alkoxylation Reactions;139
8.3.2;5.3.2 Cleavage of C, C-Bonds;141
8.3.3;5.3.3 Phenolic Coupling Reactions;142
8.4;5.4 Cathodic Transformations;146
8.4.1;5.4.1 Reduction of Oximes;146
8.4.2;5.4.2 Reductive Carboxylation of Aldehydes to -Hydroxycarboxylic acids;147
8.5;5.5 Stability of BDD in Electrolytes;148
8.6;5.6 Future Perspectives;149
8.7;References;149
9;6 Domestic and Industrial Water DisinfectionUsing Boron-Doped Diamond Electrodes;152
9.1;6.1 Introduction;152
9.2;6.2 Diamond Electrodes;153
9.2.1;6.2.1 Manufacturing;153
9.2.2;6.2.2 Features and Properties;155
9.3;6.3 Electrolytic Disinfection with Boron-Doped Diamond Electrodes;156
9.3.1;6.3.1 Actives Species, Advantages, and Implementation;157
9.3.2;6.3.2 Data on Several Microorganism Inactivations;159
9.4;6.4 Examples of Disinfection Applications: Dedicated Systems and Field/Evaluation Results;163
9.4.1;6.4.1 Swimming Pools (Private and Public);164
9.4.2;6.4.2 Spas;165
9.4.3;6.4.3 Rainwater;165
9.4.4;6.4.4 Sewage Water;166
9.4.5;6.4.5 Process Water;168
9.5;6.5 Conclusion;169
9.6;References;169
10;7 Drinking Water Disinfection by In-line Electrolysis: Product and Inorganic By-Product Formation;171
10.1;7.1 Introduction;171
10.2;7.2 Experimental Conditions;173
10.2.1;7.2.1 Apparatuses;173
10.2.2;7.2.2 Chemicals;174
10.2.3;7.2.3 Analytical Methods;174
10.2.4;7.2.4 Bacterial and Yeast Cultures;175
10.2.5;7.2.5 Transmission Electron Microscopy;176
10.3;7.3 Electrochemical In-line Disinfection;176
10.3.1;7.3.1 Killing of Microorganisms;176
10.3.2;7.3.2 The Production of Disinfection Products;178
10.3.3;7.3.3 The Production of Inorganic Disinfection By-Products;183
10.3.3.1;7.3.3.1 Formation of Chlorate;183
10.3.3.2;7.3.3.2 Formation of Chlorine Dioxide;186
10.3.3.3;7.3.3.3 Formation of Perchlorate;190
10.3.3.4;7.3.3.4 Formation of Nitrogen Containing By-Products;192
10.3.3.5;7.3.3.5 Formation of Reactive Oxygen Species;195
10.3.3.6;7.3.3.6 The Role of Technology, Operation Mode and Geometric Factors;198
10.3.3.7;7.3.3.7 Analytical Problems;202
10.4;7.4 Conclusions;204
10.5;References;205
11;8 Case Studies in the Electrochemical Treatment of Wastewater Containing Organic Pollutants Using BDD;213
11.1;8.1 Introduction;213
11.2;8.2 Oxidation of Model Substances;216
11.3;8.3 Oxidation of Phenolic Compounds;219
11.4;8.4 Oxidation of Dyes;222
11.5;8.5 Oxidation of Pesticides and Drugs;224
11.6;8.6 Oxidation of Surfactants;225
11.7;8.7 Economic Considerations;227
11.8;8.8 Conclusions;231
11.9;References;231
12;9 The Persulfate Process for the Mediated Oxidation of Organic Pollutants;236
12.1;9.1 Introduction;236
12.2;9.2 Kinetic and Mass-Transfer Barriersand Mediated Oxidation;238
12.3;9.3 The Mediated Oxidation with Persulfate;240
12.3.1;9.3.1 Production of Persulfate;240
12.3.2;9.3.2 Activation of Persulfate;241
12.4;9.4 Alternative Methods of Mediated Oxidation;242
12.4.1;9.4.1 Single-Step Mediated Oxidation Method;242
12.4.2;9.4.2 Two-Step Mediated Oxidation Method;245
12.4.2.1;9.4.2.1 Yield of Organic Pollutants' Oxidation;246
12.4.2.2;9.4.2.2 Chemical Oxidation of Salicylic Acid;247
12.5;9.5 Conclusions;249
12.6;References;250
13;10 Electrocoagulation in Water Treatment;252
13.1;10.1 Theoretical Aspect;252
13.1.1;10.1.1 Principle of Electrocoagulation;252
13.1.2;10.1.2 Reactions at the Electrodes and Electrodes Assignment;253
13.1.3;10.1.3 Electrode Passivation and Activation;255
13.1.4;10.1.4 Comparison Between Electrocoagulation and Chemical Coagulation;256
13.2;10.2 Typical Designs of the EC Reactors;257
13.2.1;10.2.1 Liquid Flow Assignment;257
13.3;10.3 Factors Affecting Electrocoagulation;258
13.3.1;10.3.1 Effect of Current Density or Charge Loading;258
13.3.2;10.3.2 Effect of Conductivity;260
13.3.3;10.3.3 Effect of Temperature;261
13.3.4;10.3.4 Effect of pH;261
13.4;10.4 Application of Electrocoagulation in Water Treatment;262
13.4.1;10.4.1 Arsenic Removal from Water by EC;263
13.4.2;10.4.2 Other Heavy Metal Removal from Water by EC;263
13.4.3;10.4.3 Dye Removal from Water by EC;264
13.5;10.5 A New Bipolar EC--EF Process for Wastewater Treatment;266
13.6;References;268
14;11 Electroflotation;270
14.1;11.1 Theoretical;270
14.1.1;11.1.1 Electrochemical Reactions and Gas Generating Rate;270
14.1.2;11.1.2 Electrolysis Voltage and Specific Energy Consumption;271
14.2;11.2 Features of EF;272
14.2.1;11.2.1 Bubbles' Size;272
14.2.2;11.2.2 Operation;273
14.2.3;11.2.3 Simultaneous Separation and Disinfection;273
14.3;11.3 Electrodes System;274
14.3.1;11.3.1 Cathodes;274
14.3.2;11.3.2 Anodes;274
14.3.3;11.3.3 Electrodes Arrangement;276
14.4;11.4 Typical Designs;278
14.4.1;11.4.1 Single-Stage EF;278
14.4.2;11.4.2 Two-Stage EF;280
14.4.3;11.4.3 Combination of EF with EC;280
14.5;11.5 Water and Wastewaters Treated by EF;282
14.6;References;282
15;12 Electroreduction of Halogenated Organic Compounds;285
15.1;12.1 Introduction;285
15.2;12.2 The Reaction Pathways;286
15.3;12.3 The Combined Role of Electrode Material and Reaction Medium;290
15.4;12.4 Cell Design and Operations;294
15.5;12.5 Electroreductive Treatments of Halogenated Organic Pollutants;296
15.5.1;12.5.1 Organic Volatile Halides;297
15.5.2;12.5.2 Chlorofluorocarbons;298
15.5.3;12.5.3 Polyhaloacetic Acids;299
15.5.4;12.5.4 Polyhalophenols;299
15.5.5;12.5.5 Polychlorohydrocarbons;300
15.5.6;12.5.6 Other Compounds;301
15.5.7;12.5.7 Sensors;301
15.6;12.6 Conclusions;302
15.7;References;303
16;13 Principles and Applications of Solid Polymer Electrolyte Reactors for Electrochemical Hydrodehalogenation of Organic Pollutants;313
16.1;13.1 Introduction;313
16.2;13.2 Background;314
16.3;13.3 The Solid Polymer Electrolyte Hydrodehalogenation Reactor;315
16.3.1;13.3.1 Principle of Solid Polymer Electrolyte Reactors;315
16.3.2;13.3.2 SPE HDH Reactor Equipment;319
16.3.3;13.3.3 Principle of the SPE HDH Reactor;319
16.3.4;13.3.4 Parameters Used for Performance Evaluation;320
16.3.5;13.3.5 Voltammetry;321
16.3.6;13.3.6 Percentage of Halogenated Organics Removal and Space--Time Yield;322
16.3.7;13.3.7 Selectivity;325
16.3.8;13.3.8 Current Efficiency and Energy Consumption;325
16.3.9;13.3.9 Stability of the HDH Reactor;326
16.4;13.4 Conclusion;327
16.5;References;328
17;14 Preparation, Analysis and Behaviors of Ti-Based SnO2 Electrode and the Function of Rare-Earth Doping in Aqueous Wastes Treatment;330
17.1;14.1 Introduction: Background and Significance;330
17.2;14.2 Electrode Fabrication Methods;332
17.2.1;14.2.1 Pretreatment of the Ti-Base Metal;332
17.2.2;14.2.2 Dip-Pyrolysis Method;332
17.2.3;14.2.3 Electrodeposition;334
17.2.4;14.2.4 Technologies for Nanometer Coating Fabrication;334
17.2.5;14.2.5 Technologies of Increasing the Life Service of the Electrodes;335
17.3;14.3 Analysis Method;337
17.3.1;14.3.1 Analysis of the Degradation Solution;337
17.3.2;14.3.2 Structure of the Electrodes;342
17.3.2.1;14.3.2.1 Crystal Structure of Electrodes;342
17.3.2.2;14.3.2.2 Micrograph of the Electrodes;343
17.3.2.3;14.3.2.3 Chemical Environmental Analysis with XPS;343
17.3.3;14.3.3 Electrochemical Analysis;345
17.3.3.1;14.3.3.1 Cyclic Voltammograms Analysis;345
17.3.3.2;14.3.3.2 Tafel Curve;348
17.3.3.3;14.3.3.3 Electrochemical Impedance Spectroscopy Tests;349
17.3.4;14.3.4 Summary;351
17.4;14.4 Characteristics of Rare-earth Doped Ti-Base SnO2 Electrode;351
17.4.1;14.4.1 Sb Doping SnO2 Electrode;351
17.4.2;14.4.2 Effects of Rare-Earth Doping on Structure and Performance of Ti/Sb--SnO2 Electrode;352
17.4.3;14.4.3 Reaction Pathway of Electrochemical Degradation of Phenol on Ti/SnO2--Sb Electrodes;353
17.4.4;14.4.4 Summary;355
17.5;References;355
18;15 Wet Electrolytic Oxidation of Organics and Application for Sludge Treatment;358
18.1;15.1 Introduction;358
18.2;15.2 Peculiar Electrolysis of Aqueous Solution at Higher Temperatures;361
18.3;15.3 Wet Electrolytic Oxidation of Organics;363
18.4;15.4 Behavior of Organic Sludge Under Hydrothermal Conditions;367
18.5;15.5 Wet Electrolytic Oxidation of Organic Sludge;369
18.6;15.6 Materials for WEO;371
18.7;15.7 Conclusions;374
18.8;References;374
19;16 Environmental Photo(electro)catalysis: Fundamental Principles and Applied Catalysts;376
19.1;16.1 Introduction;376
19.2;16.2 Description of Photocatalytic Systems;377
19.2.1;16.2.1 The Semiconductor--Electrolyte Interface in the Absence of Redox Systems;377
19.2.2;16.2.2 The Semiconductor--Electrolyte Interface in the Presence of Redox Systems;379
19.2.3;16.2.3 The Semiconductor--Liquid Interface Under Illumination;383
19.2.4;16.2.4 Photocatalytic Reactions at Semiconductor Particles;388
19.2.4.1;16.2.4.1 Charge Transfer at Semiconductor Particles;388
19.2.4.2;16.2.4.2 Quantum Size Effect;389
19.2.4.3;16.2.4.3 Photonic Efficiency and Quantum Yield in Photocatalytic Systems;391
19.3;16.3 Materials for Photocatalysis;392
19.3.1;16.3.1 Single Semiconductors;392
19.3.1.1;16.3.1.1 TiO2;392
19.3.1.2;16.3.1.2 ZnO;397
19.3.1.3;16.3.1.3 SnO2;398
19.3.1.4;16.3.1.4 WO3, Fe2 O3 and CdS;399
19.3.2;16.3.2 Coupled Semiconductors;401
19.3.2.1;16.3.2.1 TiO2/WO3;402
19.3.2.2;16.3.2.2 TiO2/SnO2;403
19.3.2.3;16.3.2.3 TiO2/CdS;405
19.3.3;16.3.3 Noble Metal/Semiconductor Composites;409
19.3.3.1;16.3.3.1 Ag/TiO2;410
19.3.3.2;16.3.3.2 Au/TiO2;413
19.3.3.3;16.3.3.3 Pt/TiO2;415
19.3.4;16.3.4 Doped Semiconductors;418
19.3.4.1;16.3.4.1 Nonmetal-Ion Doped Photocatalysts;419
19.3.4.2;16.3.4.2 Metal-Ion-Doped Photocatalysts;426
19.4;16.4 Concluding Remarks;431
19.5;References;431
20;17 Solar Disinfection of Water by TiO2 Photoassisted Processes: Physicochemical, Biological, and Engineering Aspects;448
20.1;17.1 Introduction;448
20.2;17.2 Experimental Part;450
20.2.1;17.2.1 Photoreactors and Light Sources;450
20.2.1.1;17.2.1.1 Pyrex Glass Bottle Illuminated by Solar L450
20.2.1.2;17.2.1.2 Coaxial Photocatalytic Reactor;450
20.2.1.3;17.2.1.3 Compound Parabolic Reactor CPC;451
20.2.2;17.2.2 Materials;451
20.2.3;17.2.3 Bacterial Strain and Growth Media;451
20.3;17.3 Physicochemical Aspects;452
20.3.1;17.3.1 TiO2 Concentration;452
20.3.2;17.3.2 Presence of Natural Anions;453
20.3.3;17.3.3 Presence of Iron;456
20.3.4;17.3.4 pH Influence;458
20.3.5;17.3.5 Physicochemical Characteristics of Suspended TiO2;459
20.3.6;17.3.6 Supported TiO2;459
20.3.6.1;17.3.6.1 TiO2 Fixed in Nafion Membranes;460
20.3.6.2;17.3.6.2 TiO2 Fixed on Glass;460
20.3.6.3;17.3.6.3 TiO2 Coated on Fibrous Web;462
20.3.7;17.3.7 Oxygen Concentration;463
20.4;17.4 Biological Aspects;464
20.4.1;17.4.1 Initial Bacterial Concentration;464
20.4.2;17.4.2 Physiological State of Bacteria;464
20.5;17.5 Technological Aspects;466
20.5.1;17.5.1 Durability of Disinfection and Postirradiation Events;466
20.5.2;17.5.2 Water Disinfection by Sunlight Using a CPC Photoreactor;467
20.5.3;17.5.3 Water Disinfection by Sunlight and TiO2 Using a CPC Photoreactor;467
20.5.4;17.5.4 Postirradiation Events at Field-Scale Experiments;468
20.5.5;17.5.5 Dose in Water Disinfection;470
20.5.6;17.5.6 Flow Rate and TiO2 Concentration;471
20.6;17.6 Outgoing Work in Photocatalytic Disinfection;473
20.7;References;473
21;18 Fabrication of Photoelectrode Materials;478
21.1;18.1 Sol--Gel Methods;478
21.2;18.2 Film Assembly Using Particles;479
21.2.1;18.2.1 Simple Sintering of Particles;479
21.2.2;18.2.2 Layer-by-Layer Self-Assembly;480
21.2.3;18.2.3 Electrophoretic Deposition;481
21.3;18.3 Aqueous Phase Deposition;482
21.3.1;18.3.1 Electrodeposition;482
21.3.2;18.3.2 Hydrothermal Methods;485
21.3.3;18.3.3 Electrochemical Anodization;486
21.3.4;18.3.4 Template Methods;488
21.3.4.1;18.3.4.1 ``Hard'' Template Methods;489
21.3.4.2;18.3.4.2 ``Soft'' Template Methods;491
21.3.5;18.3.5 Methods for Synthesis of Composite Photoelectrodes;492
21.3.5.1;18.3.5.1 Wet Impregnation Method;492
21.3.5.2;18.3.5.2 Photodeposition;494
21.3.5.3;18.3.5.3 Deposition--Precipitation;495
21.4;18.4 Gas-Phase Deposition;496
21.4.1;18.4.1 CVD Methods;496
21.4.2;18.4.2 Spray Pyrolysis;498
21.4.3;18.4.3 Magnetron Sputtering;499
21.4.4;18.4.4 Ion-Implantation;503
21.5;18.5 Concluding Remarks;507
21.6;References;508
22;19 Use of Both Anode and Cathode Reactions in Wastewater Treatment;519
22.1;19.1 Introduction;519
22.2;19.2 Fundamentals of Indirect Electro-oxidation Methods Based on H2O2 Electrogeneration;520
22.2.1;19.2.1 Cathodic Electrogeneration of Hydrogen Peroxide;520
22.2.2;19.2.2 Anodic Oxidation with Electrogenerated H2O2;525
22.2.3;19.2.3 Electro-Fenton Method;526
22.2.4;19.2.4 Photoelectro-Fenton Method;528
22.2.5;19.2.5 Peroxi-coagulation Method;529
22.3;19.3 Electro-Fenton Degradation of Organics Using a Divided Cell;529
22.4;19.4 Treatment of Wastewaters Using an Undivided CellUnder Potentiostatic Control;533
22.5;19.5 Degradation of Organic Pollutants Using an Undivided Cell Under Galvanostatic Control;535
22.5.1;19.5.1 Pt/Carbon-Felt Cell;536
22.5.2;19.5.2 Pt/O2 Cell;537
22.5.3;19.5.3 BDD/O2 Cell;544
22.5.4;19.5.4 Fe/O2 Cell;548
22.6;19.6 Conclusions;551
22.7;References;552
23;Index;557



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.