Comini / Faglia / Sberveglieri | Solid State Gas Sensing | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 280 Seiten

Comini / Faglia / Sberveglieri Solid State Gas Sensing


1. Auflage 2008
ISBN: 978-0-387-09665-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 280 Seiten

ISBN: 978-0-387-09665-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Solid State Gas Sensing offers insight into the principles, applications, and new trends in gas sensor technology. Developments in this field are rapidly advancing due to the recent and continuing impact of nanotechnology, and this book addresses the demand for small, reliable, inexpensive and portable systems for monitoring environmental concerns, indoor air quality, food quality, and many other specific applications. Working principles, including electrical, permittivity, field effect, electrochemical, optical, thermometric and mass (both quartz and cantilever types), are discussed, making the book valuable and accessible to a variety of researchers and engineers in the field of material science.

Comini / Faglia / Sberveglieri Solid State Gas Sensing jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Contributors;12
4;Micro-Fabrication of Gas Sensors;15
4.1;1.1 Introduction;15
4.2;1.2 Gas Sensors and MEMS Miniaturization Techniques;17
4.2.1;1.2.1 Silicon as a Sensor Material;17
4.2.2;1.2.2 Thermal Sensors and Actuators;18
4.2.3;1.2.3 Thermal Microstructures;20
4.3;1.3 Specific Sensor Examples;25
4.3.1;1.3.1 Heat Conductivity Sensors;25
4.3.2;1.3.2 Metal-Oxide-Based Gas Sensors;29
4.3.3;1.3.3 Field-Effect Gas Sensors;33
4.3.4;1.3.4 Thermal Infrared Emitters;35
4.4;1.4 Gas-Sensing Microsystems;36
4.4.1;1.4.1 Low False-Alarm-Rate Fire Detection;37
4.4.2;1.4.2 Air Quality Monitoring and Leak Detection;41
4.5;1.5 Industrialization Issues;48
4.5.1;1.5.1 Initiating a System-Level Innovation;48
4.5.2;1.5.2 Building Added-Value Lines;48
4.5.3;1.5.3 Mastering the MEMS Challenge;50
4.5.4;1.5.4 Cooperation Across Technical and Economic Interfaces;51
4.5.5;1.5.5 Creating Higher Added Value;54
4.6;1.6 Conclusions and Outlook;54
4.7;References;55
5;Electrical-Based Gas Sensing;61
5.1;2.1 Introduction;61
5.2;2.2 Metal Oxide Semiconductor Surfaces;63
5.2.1;2.2.1 Geometric Structures;63
5.2.2;2.2.2 Electronic Structures;64
5.3;2.3 Electrical Properties of Metal Oxide Semiconductor Surfaces;64
5.3.1;2.3.1 Semiconductor Statistics;64
5.3.2;2.3.2 Surface States;66
5.3.3;2.3.3 Surface Space Charge Region;68
5.3.4;2.3.4 Surface Dipoles;71
5.4;2.4 Conduction Models of Metal Oxides Semiconductor;72
5.4.1;2.4.1 Polycrystalline Materials with Large Grains;74
5.4.2;2.4.2 Polycrystalline Materials with Small Grains;75
5.4.3;2.4.3 Mono-crystalline Materials;77
5.5;2.5 Adsorption over Metal Oxide Semiconductor Surfaces;79
5.5.1;2.5.1 Physical and Chemical Adsorption;79
5.5.2;2.5.2 Surface Reactions Towards Electrical Properties;81
5.5.3;2.5.3 Catalysts and Promoters;83
5.6;2.6 Deposition Techniques;84
5.6.1;2.6.1 Three-Dimensional Nanostructures;84
5.6.2;2.6.2 Two-Dimensional Nanostructures;85
5.6.3;2.6.3 One-Dimensional Materials;94
5.7;2.7 Conductometric Sensor Fabrication;98
5.7.1;2.7.1 Substrate and Heater;98
5.7.2;2.7.2 Electrical Contacts;102
5.7.3;2.7.3 Heating Treatments;103
5.7.4;2.7.4 Dopings, Catalysts and Filters;104
5.8;2.8 Transduction Principles and Related Novel Devices;106
5.8.1;2.8.1 DC Resistance;106
5.8.2;2.8.2 AC Impedance;108
5.8.3;2.8.3 Response Photoactivation;109
5.9;2.9 Conclusions and Outlook;113
5.10;References;113
6;Capacitive-Type Relative Humidity Sensor with Hydrophobic Polymer Films;122
6.1;3.1 Introduction;122
6.2;3.2 Fundamental Aspects;123
6.2.1;3.2.1 Sorption Isotherms of Polymers;123
6.2.2;3.2.2 Water Sorption Behavior of Polymers;124
6.2.3;3.2.3 Effects of the Sorbed Water on the Dielectric Properties;124
6.3;3.3 Characterization of Polymers;126
6.3.1;3.3.1 Sorption Isotherms;126
6.3.2;3.3.2 FT-IR Measurement;128
6.3.3;3.3.3 Solvatochromism;130
6.3.4;3.3.4 Capacitance Changes with Water Sorption;133
6.3.5;3.3.5 Cross-Linked Polymer;137
6.4;3.4 Humidity-Sensors-Based Hydrophobic Polymer Thin Films;143
6.4.1;3.4.1 Poly-Methylmethacrylate-Based Humidity Sensor;144
6.4.1.1;3.4.1.1 Initial Performances;144
6.4.1.2;3.4.1.2 Temperature Dependence;144
6.4.1.3;3.4.1.3 Long-Term Stability;145
6.4.2;3.4.2 Characteristics of Cross-Linked PMMA-Based Sensor;146
6.4.2.1;3.4.2.1 Initial Performances;146
6.4.2.2;3.4.2.2 Temperature Dependence;147
6.4.2.3;3.4.2.3 Durability against Acetone Vapor;147
6.4.2.4;3.4.2.4 Long-Term Stability;148
6.4.3;3.4.3 Polysulfone-based Sensor;149
6.4.3.1;3.4.3.1 Initial Performances;149
6.4.3.2;3.4.3.2 Long-Term Stability;150
6.4.4;3.4.4 Acetylene-Terminated Polyimide-based Sensor;151
6.4.4.1;3.4.4.1 Determination of Curing Condition;151
6.4.4.2;3.4.4.2 Initial Performances;154
6.4.4.3;3.4.4.3 Temperature Dependence;154
6.4.4.4;3.4.4.4 Other Sensing Characteristics;155
6.4.5;3.4.5 Cross-Lined Fluorinated Polyimide-Based Sensor;156
6.4.5.1;3.4.5.1 Sensor Fabrication;156
6.4.5.2;3.4.5.2 Initial Performances;156
6.4.5.3;3.4.5.3 Long-Term Stability;158
6.4.6;3.4.6 Improvements Using MEMS Technology;158
6.4.6.1;3.4.6.1 Sensor Preparation;159
6.4.6.2;3.4.6.2 Sensing Characteristics;160
6.5;References;162
7;FET Gas-Sensing Mechanism, Experimental and Theoretical Studies;165
7.1;4.1 Introduction;165
7.2;4.2 Brief Summary of the Detection Mechanism of FET Devices;166
7.3;4.3 UHV Studies of FET Surface Reactions;169
7.4;4.4 TEM and SEM Studies of the Nanostructure of FET Sensing Layers;172
7.5;4.5 Mass Spectrometry for Atmospheric Pressure Studies;173
7.6;4.6 The Scanning Light Pulse Technology;174
7.7;4.7 DRIFT Spectroscopy for In Situ Studies of Adsorbates;175
7.8;4.8 Atomistic Modelling of Chemical Reactions on FET Sensor Surfaces;180
7.9;4.9 Nanoparticles as Sensing Layers in FET Devices;183
7.10;4.10 Summary and Outlook;185
7.11;References;186
8;Solid-State Electrochemical Gas Sensing;192
8.1;5.1 Introduction;192
8.2;5.2 Mixed-Potential-Type Sensors;196
8.2.1;5.2.1 High-Temperature-Type NOx Sensors;196
8.2.2;5.2.2 Improvement in NO2 Sensitivity by Additives;200
8.2.3;5.2.3 Hydrocarbon (C3H6 or CH4) Sensors;202
8.2.4;5.2.4 Use of Nanostructured NiO-Based Materials;203
8.2.5;5.2.5 Nanosized Au Thin-Layer for Sensing Electrode;207
8.3;5.3 Amperometric Sensors;209
8.4;5.4 Impedancemetric Sensors;211
8.4.1;5.4.1 Sensing of Various Gases in ppm Level;211
8.4.2;5.4.2 Environmental Monitoring of C3H6 in ppb Level;212
8.5;5.5 Solid-State Reference Electrode;215
8.6;5.6 Conclusions and Future Prospective;216
8.7;References;217
9;Optical Gas Sensing;219
9.1;6.1 Introduction;219
9.2;6.2 Spectroscopic Detection Schemes;220
9.3;6.3 Ellipsometry;223
9.4;6.4 Surface Plasmon Resonance;226
9.5;6.5 Guided-Wave Configurations for Gas Sensing;231
9.5.1;6.5.1 Integrated Optical SPR Sensors;233
9.5.2;6.5.2 Fiber Optic SPR Sensors;233
9.5.3;6.5.3 Conventional and Microstructured Fibers for Gas Sensing;235
9.6;6.6 Conclusions;239
9.7;References;241
10;Thermometric Gas Sensing;247
10.1;7.1 Detection of Combustible Gases;247
10.1.1;7.1.3 Combustion;247
10.1.2;7.1.3 Thermal Considerations during Combustion;248
10.1.3;7.1.3 Catalysis;249
10.1.4;7.1.3 Explosive Mixtures;250
10.2;7.2 Catalytic Sensing;251
10.2.1;7.2.1 Pellistors;252
10.2.1.1;7.2.1.1 Safe Detection of Explosive Mixtures;254
10.2.1.2;7.2.1.2 Calibration of Pellistor Sensors;255
10.2.1.3;7.2.1.3 Reliability Issues;255
10.2.1.4;7.2.1.4 Limitations in Use of Pellistors;257
10.2.2;7.2.2 Microcalorimeters in Enzymatic Reactions;258
10.3;7.3 Thermal Conductivity Sensors;259
10.4;7.4 Calorimetric Sensors Measuring Adsorption/Desorption Enthalpy;261
10.5;7.5 MEMS and Silicon Components;261
10.5.1;7.5.1 Thermal Considerations;262
10.5.2;7.5.2 Temperature Readout;264
10.5.3;7.5.3 Integrated Calorimetric Sensors;266
10.6;7.6 Sensor Arrays and Electronic Noses;267
10.7;References;269
11;Acoustic Wave Gas and Vapor Sensors;271
11.1;8.1 Introduction;271
11.1.1;8.1.4 Acoustic Waves in Elastic Media;273
11.1.2;8.1.4 Advantages of Acoustic-Wave-Based Gas-Phase Sensors;276
11.2;8.2 Thickness Shear Mode (TSM)-Based Gas Sensors;277
11.2.1;8.2.1 Quartz Crystal Microbalance (QCM)-Based Gas Sensors;278
11.2.1.1;8.2.1.1 Gas and Vapor Sensitivity;279
11.2.1.2;8.2.1.2 QCM Gas Sensor Performance;282
11.2.2;8.2.2 Thin-Film Resonator (TFR)-Based Gas Sensors;286
11.2.2.1;8.2.2.1 TFBAR Structures;286
11.2.2.2;8.2.2.2 SMR Structures;286
11.2.2.3;8.2.2.3 Gas and Vapor Sensitivity;288
11.2.2.4;8.2.2.4 Advantages and Disadvantages of TFRs Over QCMs;288
11.2.2.5;8.2.2.5 TFR Gas Sensor Performance;289
11.3;8.3 Surface Acoustic Wave (SAW)-Based Gas Sensors;292
11.3.1;8.3.1 Conventional SAW Gas Sensors;295
11.3.2;8.3.2 Multi-Layered SAW Gas Sensors;296
11.3.3;8.3.3 Gas and Vapor Sensitivity;296
11.3.3.1;8.3.3.1 Mechanical Perturbations;297
11.3.3.2;8.3.3.2 Acoustoelectric Perturbations;298
11.3.4;8.3.4 SAW Device Gas Sensor Performance;301
11.4;8.4 Concluding Remarks;306
11.5;References;306
12;Cantilever-Based Gas Sensing;315
12.1;9.1 Introduction to Microcantilever-Based Sensing;315
12.1.1;9.1.5 Early Approaches to Mechanical Sensing;315
12.1.2;9.1.5 Cantilever Sensors;316
12.1.3;9.1.5 Deflection Measurement;317
12.1.3.1;9.1.3.1 Piezoresistive Readout;318
12.1.3.2;9.1.3.2 Piezoelectric Readout;318
12.1.3.3;9.1.3.3 Capacitive Readout;319
12.1.3.4;9.1.3.4 Beam-Deflection Optical Readout;319
12.2;9.2 Modes of Operation;320
12.2.1;9.2.1 Static Mode;320
12.2.2;9.2.2 Dynamic Mode;321
12.3;9.3 Functionalization;322
12.4;9.4 Example of an Optical Beam-Deflection Setup;323
12.4.1;9.4.1 General Description;323
12.4.2;9.4.2 Cantilever-Based Electronic Nose Application;324
12.5;9.5 Applications of Cantilever-Based Gas Sensors;326
12.5.1;9.5.1 Gas Sensing;326
12.5.2;9.5.2 Chemical Vapor Detection;328
12.5.3;9.5.3 Explosives Detection;329
12.5.4;9.5.4 Gas Pressure and Flow Sensing;331
12.6;9.6 Other Techniques;332
12.6.1;9.6.1 Metal Oxide Gas Sensors;332
12.6.2;9.6.2 Quartz Crystal Microbalance;333
12.6.3;9.6.3 Conducting Polymer Sensors;333
12.6.4;9.6.4 Surface Acoustic Waves;333
12.6.5;9.6.5 Field Effect Transistor Sensors Devices;334
12.7;References;335
13;Index;339



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.