E-Book, Englisch, 1024 Seiten
E-Book, Englisch, 1024 Seiten
ISBN: 978-0-08-046970-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
All three volumes of Applied Process Design for Chemical and Petrochemical Plants serve the practicing engineer by providing organized design procedures, details on the equipment suitable for application selection, and charts in readily usable form. Process engineers, designers, and operators will find more chemical petrochemical plant design data in:
Volume 2, Third Edition, which covers distillation and packed towers as well as material on azeotropes and ideal/non-ideal systems.
Volume 3, Third Edition, which covers heat transfer, refrigeration systems, compression surge drums, and mechanical drivers.
A. Kayode Coker, is Chairman of Chemical & Process Engineering Technology department at Jubail Industrial College in Saudi Arabia. He's both a chartered scientist and a chartered chemical engineer for more than 15 years. and an author of Fortran Programs for Chemical Process Design, Analysis and Simulation, Gulf Publishing Co., and Modeling of Chemical Kinetics and Reactor Design, Butterworth-Heinemann.Provides improved design manuals for methods and proven fundamentals of process design with related data and chartsCovers a complete range of basic day-to-day petrochemical operation topics with new material on significant industry changes since 1995.
A. Kayode Coker, Ph.D., is an engineering Coordinator at Saudi Aramco Shell Refinery Company, in Jubail, Saudi Arabia and is a consultant for AKC Technology in the UK. Prior to this he was Chairman of the Chemical and Process Engineering Department at Jubail Industrial College. He has also been a chartered scientist and a chartered chemical engineer for over 30 years. Coker is a Fellow of the Institution of Chemical Engineers. UK, (C.Eng, CSci, FIChemE) and a senior member of the American Institute of Chemical Engineers (AIChE). He holds a B.Sc. honors degree in Chemical Engineering, a Master of Science degree in Process Analysis and Development, and a Ph.D. in Chemical Engineering, all from Aston University, Birmingham, UK. He also has a Teachers' Certificate in Education from the University of London, UK. He has directed and conducted short courses in both the UK and for SABIC industries in Saudi Arabia. His articles have been published in several international journals, he is an author of four books in chemical engineering and a contributor to the Encyclopaedia of Chemical Processing and Design, Vol. 61. Coker was named as one of the International Biographical Centre's Leading Engineers of the World 2008.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Ludwig’s Applied Process Design for Chemical and Petrochemical Plants;4
3;Copyright Page;5
4;Table of Contents;8
5;Preface to the Fourth Edition;12
6;Preface to the Third Edition;13
7;Foreword;14
8;Acknowledgments;15
9;Biography;16
10;Disclaimer;17
11;Using the Software and Excel Spreadsheet Programs;18
12;CHAPTER 0 RULES OF THUMB: SUMMARY;19
12.1;COMPRESSORS, FANS, BLOWERS AND VACUUM PUMPS;19
12.2;CONVEYORS FOR PARTICULATE SOLIDS;19
12.3;COOLING TOWERS;19
12.4;CRYSTALLIZATION FROM SOLUTION;20
12.5;DISINTEGRATION;20
12.6;TOWERS;20
12.7;TRAY TOWERS;20
12.8;PACKED TOWERS;21
12.9;DRIVERS AND POWER RECOVERY EQUIPMENT;21
12.10;DRYING OF SOLIDS;21
12.11;EVAPORATORS;22
12.12;EXTRACTION, LIQUID–LIQUID;22
12.13;FILTRATION;22
12.14;FLUIDIZATION OF PARTICLES WITH GASES;22
12.15;HEAT EXCHANGERS;23
12.16;INSULATION;23
12.17;MIXING AND AGITATION;23
12.18;PARTICLE SIZE ENLARGEMENT;23
12.19;PIPING;24
12.20;PUMPS;24
12.21;REACTORS;24
12.22;REFRIGERATION;24
12.23;SIZE SEPARATION OF PARTICLES;25
12.24;UTILITIES, COMMON SPECIFICATIONS;25
12.25;VESSELS (DRUMS);25
12.26;VESSEL (PRESSURE);25
12.27;VESSELS (STORAGE TANKS);26
13;CHAPTER 1 PROCESS PLANNING, SCHEDULING, AND FLOWSHEET DESIGN;28
13.1;1.1 ORGANIZATIONAL STRUCTURE;28
13.2;1.2 PROCESS DESIGN SCOPE;30
13.3;1.3 ROLE OF THE PROCESS DESIGN ENGINEER;30
13.4;1.4 COMPUTER-AIDED FLOWSHEETING;31
13.5;1.5 THE SEQUENTIAL MODULAR SIMULATION;33
13.6;1.6 THE EQUATION MODULAR APPROACH;36
13.7;1.7 DEGREES-OF-FREEDOM MODELING;36
13.8;1.8 ISOBUTANE CHEMICALS (iC4H10);37
13.9;1.9 FLOWSHEETS – TYPES;42
13.10;1.10 FLOWSHEET PRESENTATION;43
13.11;1.11 GENERAL ARRANGEMENTS GUIDE;44
13.12;1.12 COMPUTER-AIDED FLOWSHEET DESIGN/DRAFTING;44
13.13;1.13 OPERATOR TRAINING SIMULATOR SYSTEM;45
13.14;1.14 FLOWSHEET SYMBOLS;46
13.15;1.15 WORKING SCHEDULES;66
13.16;1.16 INFORMATION CHECKLISTS;68
13.17;1.17 SYSTEM OF UNITS;83
13.18;1.18 SYSTEM DESIGN PRESSURES;83
13.19;1.19 TIME PLANNING AND SCHEDULING;84
13.20;1.20 PLANT LAYOUT;92
13.21;1.21 RULES OF THUMB ESTIMATING;94
13.22;NOMENCLATURE;94
13.23;ABBREVIATION;94
13.24;REFERENCES;94
13.25;FURTHER READING;95
14;CHAPTER 2 COST ESTIMATION AND ECONOMIC EVALUATION;96
14.1;2.1 INTRODUCTION;96
14.2;2.2 CAPITAL COST ESTIMATION;96
14.3;2.3 EQUIPMENT COST ESTIMATIONS BY CAPACITY RATIO EXPONENTS;98
14.4;2.4 YEARLY COST INDICES;99
14.5;2.5 FACTORED COST ESTIMATE;101
14.6;2.6 DETAILED FACTORIAL COST ESTIMATES;101
14.7;2.7 BARE MODULE COST FOR EQUIPMENT;105
14.8;2.8 SUMMARY OF THE FACTORIAL METHOD;106
14.9;2.9 COMPUTER COST ESTIMATING;107
14.10;2.10 PROJECT EVALUATION;107
14.11;NOMENCLATURE;128
14.12;REFERENCES;128
14.13;FURTHER READING;129
14.14;WEBSITES;129
15;CHAPTER 3 PHYSICAL PROPERTIES OF LIQUIDS AND GASES;130
15.1;3.1 DENSITY OF LIQUIDS;130
15.2;3.2 VISCOSITY OF GAS;131
15.3;3.3 VISCOSITY OF LIQUIDS;131
15.4;3.4 HEAT CAPACITY OF GAS;132
15.5;3.5 HEAT CAPACITY OF LIQUID;133
15.6;3.6 THERMAL CONDUCTIVITY OF GAS;134
15.7;3.7 THERMAL CONDUCTIVITY OF LIQUIDS AND SOLIDS;134
15.8;3.8 SURFACE TENSION;135
15.9;3.9 VAPOR PRESSURE;136
15.10;3.10 ENTHALPY OF VAPORIZATION;137
15.11;3.11 ENTHALPY OF FORMATION;138
15.12;3.12 GIBBS ENERGY OF FORMATION;139
15.13;3.13 SOLUBILITY IN WATER CONTAINING SALT;140
15.14;3.14 SOLUBILITY IN WATER AS A FUNCTION OF TEMPERATURE;141
15.15;3.15 HENRY’S LAW CONSTANT FOR GASES IN WATER;141
15.16;3.16 SOLUBILITY OF GASES IN WATER;142
15.17;3.17 SOLUBILITY AND HENRY’S LAW CONSTANT FOR SULFUR COMPOUNDS IN WATER;143
15.18;3.18 SOLUBILITY OF NAPHTHENES IN WATER;143
15.19;3.19 SOLUBILITY AND HENRY’S LAW CONSTANT FOR NITROGEN COMPOUNDS IN WATER;145
15.20;3.20 COEFFICIENT OF THERMAL EXPANSION OF LIQUID;146
15.21;3.21 VOLUMETRIC EXPANSION RATE;147
15.22;3.22 ADSORPTION ON ACTIVATED CARBON;147
15.23;3.23 DIFFUSION COEFFICIENTS (DIFFUSIVITIES);148
15.24;3.24 COMPRESSIBILITY Z-FACTOR OF NATURAL GASES;151
15.25;3.25 GENERALIZED COMPRESSIBILITY Z-FACTOR;152
15.26;3.26 GAS MIXTURES;154
15.27;NOMENCLATURE;158
15.28;GREEK LETTERS;158
15.29;REFERENCES;158
15.30;FURTHER READING;159
16;CHAPTER 4 FLUID FLOW;160
16.1;4.1 INTRODUCTION;160
16.2;4.2 FLOW OF FLUIDS IN PIPES;160
16.3;4.3 SCOPE;161
16.4;4.4 BASIS;164
16.5;4.5 INCOMPRESSIBLE FLOW;164
16.6;4.6 COMPRESSIBLE FLOW: VAPORS AND GASES [4];164
16.7;4.7 IMPORTANT PRESSURE LEVEL REFERENCES;165
16.8;4.8 FACTORS OF “SAFETY” FOR DESIGN BASIS;165
16.9;4.9 PIPE, FITTINGS, AND VALVES;165
16.10;4.10 PIPE;165
16.11;4.11 USUAL INDUSTRY PIPE SIZES AND CLASSES PRACTICE;166
16.12;4.12 BACKGROUND INFORMATION (ALSO SEE CHAPTER 5);168
16.13;4.13 REYNOLDS NUMBER, Re (SOMETIMES USED NRe);170
16.14;4.14 PIPE RELATIVE ROUGHNESS;173
16.15;4.15 DARCY FRICTION FACTOR, F;174
16.16;4.16 FRICTION HEAD LOSS (RESISTANCE) IN PIPE, FITTINGS, AND CONNECTIONS;181
16.17;4.17 PRESSURE DROP IN FITTINGS, VALVES, AND CONNECTIONS;184
16.18;4.18 VELOCITY AND VELOCITY HEAD;184
16.19;4.19 EQUIVALENT LENGTHS OF FITTINGS;184
16.20;4.20 L/D VALUES IN LAMINAR REGION;184
16.21;4.21 VALIDITY OF K VALUES;185
16.22;4.22 LAMINAR FLOW;185
16.23;4.23 LOSS COEFFICIENT;188
16.24;4.24 SUDDEN ENLARGEMENT OR CONTRACTION [2];194
16.25;4.25 PIPING SYSTEMS;195
16.26;4.26 RESISTANCE OF VALVES;198
16.27;4.27 FLOW COEFFICIENTS FOR VALVES, Cv;198
16.28;4.28 NOZZLES AND ORIFICES [4];199
16.29;4.29 ALTERNATE CALCULATION BASIS FOR PIPING SYSTEMS FRICTION HEAD LOSS: LIQUIDS;214
16.30;4.30 EQUIVALENT LENGTH CONCEPT FOR VALVES, FITTINGS AND SO ON;214
16.31;4.31 FRICTION PRESSURE DROP FOR NON-VISCOUS LIQUIDS;219
16.32;4.32 ESTIMATION OF PRESSURE LOSS ACROSS CONTROL VALVES;223
16.33;4.33 THE DIRECT DESIGN OF A CONTROL VALVE;226
16.34;4.34 FRICTION LOSS FOR WATER FLOW;227
16.35;4.35 FLOW OF WATER FROM OPEN-END HORIZONTAL PIPE;227
16.36;4.36 WATER HAMMER [23];230
16.37;4.37 FRICTION PRESSURE DROP FOR COMPRESSIBLE FLUID FLOW;230
16.38;4.38 COMPRESSIBLE FLUID FLOW IN PIPES;233
16.39;4.39 MAXIMUM FLOW AND PRESSURE DROP;233
16.40;4.40 SONIC CONDITIONS LIMITING FLOW OF GASES AND VAPORS;233
16.41;4.41 THE MACH NUMBER, MA;235
16.42;4.42 MATHEMATICAL MODEL OF COMPRESSIBLE ISOTHERMAL FLOW;236
16.43;4.43 FLOW RATE THROUGH PIPELINE;236
16.44;4.44 PIPELINE PRESSURE DROP (DELTA P);237
16.45;4.45 CRITICAL PRESSURE RATIO;238
16.46;4.46 ADIABATIC FLOW;246
16.47;4.47 THE EXPANSION FACTOR, Y;246
16.48;4.48 MISLEADING RULES OF THUMB FOR COMPRESSIBLE FLUID FLOW;250
16.49;4.49 OTHER SIMPLIFIED COMPRESSIBLE FLOW METHODS;252
16.50;4.50 FRICTION DROP FOR FLOW OF VAPORS, GASES, AND STEAM;252
16.51;4.51 DARCY RATIONAL RELATION FOR COMPRESSIBLE VAPORS AND GASES;257
16.52;4.52 VELOCITY OF COMPRESSIBLE FLUIDS IN PIPE;260
16.53;4.53 ALTERNATE SOLUTION TO COMPRESSIBLE FLOW PROBLEMS;261
16.54;4.54 PROCEDURE;264
16.55;4.55 FRICTION DROP FOR COMPRESSIBLE NATURAL GAS IN LONG PIPE LINES;265
16.56;4.56 PANHANDLE-A GAS FLOW FORMULA [4];272
16.57;4.57 MODIFIED PANHANDLE FLOW FORMULA [26];274
16.58;4.58 AMERICAN GAS ASSOCIATION (AGA) DRY GAS METHOD;274
16.59;4.59 COMPLEX PIPE SYSTEMS HANDLING NATURAL (OR SIMILAR) GAS;274
16.60;4.60 TWO-PHASE LIQUID AND GAS FLOW IN PROCESS PIPING;274
16.61;4.61 FLOW PATTERNS;275
16.62;4.62 FLOW REGIMES;275
16.63;4.63 PRESSURE DROP;277
16.64;4.64 EROSION–CORROSION;279
16.65;4.65 TOTAL SYSTEM PRESSURE DROP;280
16.66;4.66 PIPE SIZING RULES;284
16.67;4.67 A SOLUTION FOR ALL TWO-PHASE PROBLEMS;285
16.68;4.68 GAS–LIQUID TWO-PHASE VERTICAL DOWNFLOW;291
16.69;4.69 PRESSURE DROP IN VACUUM SYSTEMS;295
16.70;4.70 LOW ABSOLUTE PRESSURE SYSTEMS FOR AIR [62];298
16.71;4.71 VACUUM FOR OTHER GASES AND VAPORS;298
16.72;4.72 PIPE SIZING FOR NON-NEWTONIAN FLOW;300
16.73;4.73 SLURRY FLOW IN PROCESS PLANT PIPING;300
16.74;4.74 PRESSURE DROP FOR FLASHING LIQUIDS;301
16.75;4.75 SIZING CONDENSATE RETURN LINES;303
16.76;4.76 DESIGN PROCEDURE USING SARCO CHART [74];303
16.77;4.77 FLOW THROUGH PACKED BEDS;304
16.78;NOMENCLATURE;314
16.79;REFERENCES;326
16.80;FURTHER READING;328
16.81;SOFTWARE FOR CALCULATING PRESSURE DROP;329
17;CHAPTER 5 PUMPING OF LIQUIDS;330
17.1;5.1 PUMP DESIGN STANDARDIZATION;331
17.2;5.2 BASIC PARTS OF A CENTRIFUGAL PUMP;332
17.3;5.3 CENTRIFUGAL PUMP SELECTION;335
17.4;5.4 HYDRAULIC CHARACTERISTICS FOR CENTRIFUGAL PUMPS;338
17.5;5.5 SUCTION HEAD OR SUCTION LIFT, hs;343
17.6;5.6 DISCHARGE HEAD, hd;344
17.7;5.7 VELOCITY HEAD;346
17.8;5.8 FRICTION;350
17.9;5.9 NET POSITIVE SUCTION HEAD (NPSH) AND PUMP SUCTION;350
17.10;5.10 SPECIFIC SPEED;357
17.11;5.11 ROTATIVE SPEED;359
17.12;5.12 PUMPING SYSTEMS AND PERFORMANCE;359
17.13;5.13 POWER REQUIREMENTS FOR PUMPING THROUGH PROCESS LINES;362
17.14;5.14 AFFINITY LAWS;365
17.15;5.15 CENTRIFUGAL PUMP EFFICIENCY;368
17.16;5.16 EFFECTS OF VISCOSITY;369
17.17;5.17 CENTRIFUGAL PUMP SPECIFICATIONS;373
17.18;5.18 ROTARY PUMPS;379
17.19;5.19 RECIPROCATING PUMPS;382
17.20;5.20 SELECTION RULES-OF-THUMB;386
17.21;NOMENCLATURE;386
17.22;REFERENCES;395
17.23;FURTHER READING;395
18;CHAPTER 6 MECHANICAL SEPARATIONS;398
18.1;6.1 PARTICLE SIZE;398
18.2;6.2 PRELIMINARY SEPARATOR SELECTION;398
18.3;6.3 GUIDE TO DUST SEPARATOR APPLICATIONS;400
18.4;6.4 GUIDE TO LIQUID–SOLID PARTICLE SEPARATORS;400
18.5;6.5 GRAVITY SETTLERS;400
18.6;6.6 TERMINAL VELOCITY;400
18.7;6.7 ALTERNATE TERMINAL VELOCITY CALCULATION;408
18.8;6.8 AMERICAN PETROLEUM INSTITUTE’S OIL FIELD SEPARATORS;409
18.9;6.9 MODIFIED METHOD OF HAPPEL AND JORDAN [22];413
18.10;6.10 DECANTER [25];413
18.11;6.11 IMPINGEMENT SEPARATORS;416
18.12;6.12 CENTRIFUGAL SEPARATORS;427
18.13;NOMENCLATURE;467
18.14;REFERENCES;468
18.15;FURTHER READING;469
19;CHAPTER 7 MIXING OF LIQUIDS;472
19.1;7.1 MECHANICAL COMPONENTS;474
19.2;7.2 IMPELLERS;474
19.3;7.3 EQUIPMENT FOR AGITATION;488
19.4;7.4 FLOW PATTERNS;492
19.5;7.5 FLOW VISUALIZATION;494
19.6;7.6 MIXING CONCEPTS, THEORY, FUNDAMENTALS;495
19.7;7.7 FLOW;495
19.8;7.8 POWER;497
19.9;7.9 SCALE OF AGITATION, SA;508
19.10;7.10 MIXING TIME CORRELATION;508
19.11;7.11 SHAFT;510
19.12;7.12 DRIVE AND GEARS;510
19.13;7.13 STEADY BEARINGS;510
19.14;7.14 DRAFT TUBES;511
19.15;7.15 ENTRAINMENT;511
19.16;7.16 BATCH OR CONTINUOUS MIXING;512
19.17;7.17 BAFFLES;522
19.18;7.18 BLENDING;526
19.19;7.19 EMULSIONS;528
19.20;7.20 EXTRACTION;528
19.21;7.21 GAS–LIQUID CONTACTING;528
19.22;7.22 GAS–LIQUID MIXING OR DISPERSION;528
19.23;7.23 HEAT TRANSFER: COILS IN TANK, LIQUID AGITATED;528
19.24;7.24 EFFECTS OF VISCOSITY ON PROCESS FLUID HEAT TRANSFER FILM COEFFICIENT;528
19.25;7.25 HEAT TRANSFER AREA;532
19.26;7.26 IN-LINE, STATIC, OR MOTIONLESS MIXING;533
19.27;NOMENCLATURE;547
19.28;REFERENCES;548
19.29;FURTHER READING;549
19.30;WEBSITES;550
20;CHAPTER 8 EJECTORS AND MECHANICAL VACUUM SYSTEMS;552
20.1;8.1 EJECTORS;552
20.2;8.2 VACUUM SAFETY;552
20.3;8.3 TYPICAL RANGE PERFORMANCE OF VACUUM PRODUCERS;552
20.4;8.4 FEATURES;553
20.5;8.5 TYPES;554
20.6;8.6 MATERIALS OF CONSTRUCTION;556
20.7;8.7 VACUUM RANGE GUIDE;556
20.8;8.8 PRESSURE TERMINOLOGY;559
20.9;8.9 PRESSURE DROP AT LOW ABSOLUTE PRESSURES;559
20.10;8.10 PERFORMANCE FACTORS;559
20.11;8.11 TYPES OF LOADS;567
20.12;8.12 LOAD VARIATION;578
20.13;8.13 STEAM AND WATER REQUIREMENTS;579
20.14;8.14 EJECTOR SYSTEM SPECIFICATIONS;579
20.15;8.15 EJECTOR SELECTION PROCEDURE;581
20.16;8.16 WATER JET EJECTORS;583
20.17;8.17 STEAM JET THERMOCOMPRESSORS;584
20.18;8.18 EJECTOR CONTROL;584
20.19;8.19 TIME REQUIRED FOR SYSTEM EVACUATION;585
20.20;8.20 ALTERNATE PUMPDOWN TO A VACUUM USING A MECHANICAL PUMP;586
20.21;8.21 EVALUATION WITH STEAM JETS;587
20.22;8.22 MECHANICAL VACUUM PUMPS;589
20.23;8.23 LIQUID RING VACUUM PUMPS/COMPRESSOR;589
20.24;8.24 ROTARY VANE VACUUM PUMPS;592
20.25;8.25 ROTARY BLOWERS OR ROTARY LOBE-TYPE BLOWERS;592
20.26;8.26 ROTARY PISTON PUMPS;596
20.27;NOMENCLATURE;599
20.28;REFERENCES;599
20.29;FURTHER READING;600
20.30;WEBSITES ON EJECTORS, VACUUM SYSTEMS, AND SCRUBBERS;600
21;CHAPTER 9 PROCESS SAFETY AND PRESSURE-RELIEVING DEVICES;602
21.1;9.1 TYPES OF POSITIVE PRESSURE-RELIEVING DEVICES (SEE MANUFACTURERS’ CATALOGS FOR DESIGN DETAILS);602
21.2;9.2 TYPES OF VALVES/RELIEF DEVICES;604
21.3;9.3 MATERIALS OF CONSTRUCTION;609
21.4;9.4 GENERAL CODE REQUIREMENTS [1];609
21.5;9.5 RELIEF MECHANISMS;614
21.6;9.6 PRESSURE SETTINGS AND DESIGN BASIS;615
21.7;9.7 UNFIRED PRESSURE VESSELS ONLY, BUT NOT FIRED OR UNFIRED STEAM BOILERS;620
21.8;9.8 RELIEVING CAPACITY OF COMBINATIONS OF SAFETY RELIEF VALVES AND RUPTURE DISKS OR NON-RECLOSURE DEVICES;621
21.9;9.9 ESTABLISHING RELIEVING OR SET PRESSURES;623
21.10;9.10 SELECTION AND APPLICATION;624
21.11;9.11 CAPACITY REQUIREMENTS EVALUATION FOR PROCESS OPERATION (NON-FIRE);624
21.12;9.12 SELECTION FEATURES: SAFETY, SAFETY RELIEF VALVES, AND RUPTURE DISKS;631
21.13;9.13 CALCULATIONS OF RELIEVING AREAS: SAFETY AND RELIEF VALVES;634
21.14;9.14 STANDARD PRESSURE-RELIEF VALVES – RELIEF AREA DISCHARGE OPENINGS;634
21.15;9.15 SIZING SAFETY RELIEF TYPE DEVICES FOR REQUIRED FLOW AREA AT TIME OF RELIEF*;634
21.16;9.16 EFFECTS OF TWO-PHASE VAPOR–LIQUID MIXTURE ON RELIEF VALVE CAPACITY;634
21.17;9.17 SIZING FOR GASES, VAPORS, OR LIQUIDS FOR CONVENTIONAL VALVES WITH CONSTANT BACK PRESSURE ONLY;634
21.18;9.18 ORIFICE AREA CALCULATIONS [42];637
21.19;9.19 SIZING VALVES FOR LIQUID RELIEF: PRESSURE-RELIEF VALVES REQUIRING CAPACITY CERTIFICATION [5D];639
21.20;9.20 SIZING VALVES FOR LIQUID RELIEF: PRESSURE-RELIEF VALVES NOT REQUIRING CAPACITY CERTIFICATION [5D];639
21.21;9.21 REACTION FORCES;643
21.22;9.22 CALCULATIONS OF ORIFICE FLOW AREA USING PRESSURE RELIEVING BALANCED BELLOWS VALVES, WITH VARIABLE OR CONSTANT BACK PRESSURE;643
21.23;9.23 SIZING VALVES FOR LIQUID EXPANSION (HYDRAULIC EXPANSION OF LIQUID FILLED SYSTEMS/EQUIPMENT/PIPING);647
21.24;9.24 SIZING VALVES FOR SUBCRITICAL FLOW: GAS OR VAPOR BUT NOT STEAM [5D];649
21.25;9.25 EMERGENCY PRESSURE RELIEF: FIRES AND EXPLOSIONS RUPTURE DISKS;652
21.26;9.26 EXTERNAL FIRES;652
21.27;9.27 SET PRESSURES FOR EXTERNAL FIRES;652
21.28;9.28 HEAT ABSORBED;653
21.29;9.29 SURFACE AREA EXPOSED TO FIRE;653
21.30;9.30 RELIEF CAPACITY FOR FIRE EXPOSURE;655
21.31;9.31 CODE REQUIREMENTS FOR EXTERNAL FIRE CONDITIONS;655
21.32;9.32 DESIGN PROCEDURE;655
21.33;9.33 PRESSURE-RELIEF VALVE ORIFICE AREAS ON VESSELS CONTAINING ONLY GAS, UNWETTED SURFACE;655
21.34;9.34 RUPTURE DISK SIZING DESIGN AND SPECIFICATION;657
21.35;9.35 SPECIFICATIONS TO MANUFACTURER;657
21.36;9.36 SIZE SELECTION;657
21.37;9.37 CALCULATION OF RELIEVING AREAS: RUPTURE DISKS FOR NON-EXPLOSIVE SERVICE;657
21.38;9.38 THE MANUFACTURING RANGE (MR);658
21.39;9.39 SELECTION OF BURST PRESSURE FOR DISK, Pb (TABLE 9-3);658
21.40;9.40 EFFECTS OF TEMPERATURE ON DISK;659
21.41;9.41 RUPTURE DISK ASSEMBLY PRESSURE DROP;660
21.42;9.42 GASES AND VAPORS: RUPTURE DISKS [5a, PAR, 4.8];660
21.43;9.43 API FOR SUBSONIC FLOW: GAS OR VAPOR (NOT STEAM);662
21.44;9.44 LIQUIDS: RUPTURE DISK;662
21.45;9.45 SIZING FOR COMBINATION OF RUPTURE DISK AND PRESSURE-RELIEF VALVE IN SERIES COMBINATION;662
21.46;9.46 PRESSURE–VACUUM RELIEF FOR LOW PRESSURE STORAGE TANKS;665
21.47;9.47 BASIC VENTING FOR LOW PRESSURE STORAGE VESSELS;665
21.48;9.48 NON-REFRIGERATED ABOVE GROUND TANKS; API-STD-2000;667
21.49;9.49 CORRECTIONS TO EXPRESS MISCELLANEOUS LIQUIDS VENTING IN TERMS OF FREE AIR (14.7 PSIA AND 60 degree F);667
21.50;9.50 EMERGENCY VENT EQUIPMENT;671
21.51;9.51 REFRIGERATED ABOVE GROUND AND BELOW GROUND TANKS [48];671
21.52;9.52 NORMAL CONDITIONS;671
21.53;9.53 EMERGENCY VENTING FOR FIRE EXPOSURE;673
21.54;9.54 FLAME ARRESTORS;673
21.55;9.55 PILOT-OPERATED VENT VALUES;674
21.56;9.56 EXPLOSIONS;674
21.57;9.57 FLAMMABILITY;675
21.58;9.58 TERMINOLOGY;678
21.59;9.59 MIXTURES OF FLAMMABLE GASES;679
21.60;9.60 PRESSURE AND TEMPERATURE EFFECTS;681
21.61;9.61 IGNITION OF FLAMMABLE MIXTURES;683
21.62;9.62 AQUEOUS SOLUTIONS OF FLAMMABLE LIQUIDS;683
21.63;9.63 BLAST PRESSURES;683
21.64;9.64 TRI-NITRO TOLUENE (TNT) EQUIVALENCE FOR EXPLOSIONS;689
21.65;9.65 PRESSURE PILING;689
21.66;9.66 BLAST SCALING;689
21.67;9.67 EXPLOSION VENTING FOR GASES/VAPORS (NOT DUSTS);693
21.68;9.68 BLEVES (BOILING LIQUID EXPANDING VAPOR EXPLOSIONS);694
21.69;9.69 LIQUID MIST EXPLOSIONS;695
21.70;9.70 RELIEF SIZING: EXPLOSIONS OF GASES AND VAPORS;695
21.71;9.71 VENT OR RELIEF AREA CALCULATION [10] FOR VENTING OF DEFLAGRATIONS IN LOW-STRENGTH ENCLOSURES;700
21.72;9.72 HIGH-STRENGTH ENCLOSURES FOR DEFLAGRATIONS;702
21.73;9.73 DETERMINATION OF RELIEF AREAS FOR DEFLAGRATIONS OF GASES/VAPORS/MISTS IN HIGH-STRENGTH ENCLOSURES;703
21.74;9.74 DUST EXPLOSIONS;705
21.75;9.75 DUST EXPLOSION CHARACTERISTICS;706
21.76;9.76 EVALUATING THE HAZARD;709
21.77;9.77 SIZING OF VENTS METHODS;715
21.78;9.78 THE VDI NOMOGRAPH METHODS;715
21.79;9.79 THE ST GROUP NOMOGRAPH METHOD;716
21.80;9.80 REGRESSION ANALYSIS FROM THE KST NOMOGRAPHS;716
21.81;9.81 EQUATIONS TO REPRESENT THE NOMOGRAPHS;717
21.82;9.82 THE VENT RATIO METHOD;722
21.83;9.83 EXTRAPOLATION/INTERPOLATION OF DUST NOMOGRAPHS;724
21.84;9.84 VENTING OF BINS, SILOS, AND HOPPERS;724
21.85;9.85 SIZING GUIDELINES (SEE [30] FOR DETAILS);726
21.86;9.86 SECONDARY DUST EXPLOSIONS IN BUILDINGS;726
21.87;9.87 DUST CLOUDS;727
21.88;9.88 DUST EXPLOSION SEVERITY;727
21.89;9.89 PREVENTING, MITIGATING, AND PROTECTION AGAINST DUST EXPLOSIONS;728
21.90;9.90 PREVENTIVE EXPLOSION PROTECTION;731
21.91;9.91 EXPLOSION SUPPRESSION;731
21.92;9.92 UNCONFINED VAPOR CLOUD EXPLOSIONS (UVCE);733
21.93;9.93 EFFECTS OF VENTING DUCTS;733
21.94;9.94 MAXIMUM DISTANCE BETWEEN VENTS;733
21.95;9.95 RUNAWAY REACTIONS: DIERS;733
21.96;9.96 HAZARD EVALUATION IN THE CHEMICAL PROCESS INDUSTRIES;741
21.97;9.97 HAZARD ASSESSMENT PROCEDURES;742
21.98;9.98 EXOTHERMS;742
21.99;9.99 ACCUMULATION;742
21.100;9.100 THERMAL RUNAWAY CHEMICAL REACTION HAZARDS;743
21.101;9.101 HEAT CONSUMED HEATING THE VESSEL: THE PHI-FACTOR;743
21.102;9.102 ONSET TEMPERATURE;744
21.103;9.103 TIME-TO-MAXIMUM RATE;744
21.104;9.104 MAXIMUM REACTION TEMPERATURE;744
21.105;9.105 VENT SIZING PACKAGE;744
21.106;9.106 VENT SIZING PACKAGE 2™(VSP2™);745
21.107;9.107 ADVANCED REACTIVE SYSTEM SCREENING TOOL;746
21.108;9.108 TWO-PHASE FLOW RELIEF SIZING FOR RUNAWAY REACTION;747
21.109;9.109 RUNAWAY REACTIONS;748
21.110;9.110 VAPOR-PRESSURE SYSTEMS;748
21.111;9.111 GASSY SYSTEMS;749
21.112;9.112 HYBRID SYSTEMS;749
21.113;9.113 SIMPLIFIED NOMOGRAPH METHOD;749
21.114;9.114 VENT SIZING METHODS;753
21.115;9.115 VAPOR-PRESSURE SYSTEMS;753
21.116;9.116 FAUSKE’S METHOD;755
21.117;9.117 GASSY SYSTEMS;755
21.118;9.118 HOMOGENEOUS TWO-PHASE VENTING UNTIL DISENGAGEMENT;756
21.119;9.119 TWO-PHASE FLOW THROUGH AN ORIFICE;756
21.120;9.120 CONDITIONS OF USE;757
21.121;9.121 DISCHARGE SYSTEM;757
21.122;9.122 SAFE DISCHARGE;757
21.123;9.123 DIRECT DISCHARGE TO THE ATMOSPHERE;757
21.124;9.124 DIERS FINAL REPORTS;759
21.125;9.125 FLARES/FLARE STACKS;759
21.126;9.126 FLARES;760
21.127;9.127 SIZING;762
21.128;9.128 FLAME LENGTH [5C];764
21.129;9.129 FLAME DISTORTION [5C] CAUSED BY WIND VELOCITY;764
21.130;9.130 FLARE STACK HEIGHT;766
21.131;9.131 PURGING OF FLARE STACKS AND VESSELS/PIPING;768
21.132;9.132 STATIC ELECTRICITY;770
21.133;9.133 COMPRESSIBLE FLOW FOR DISCHARGE PIPING;771
21.134;9.134 DESIGN EQUATIONS FOR COMPRESSIBLE FLUID FLOW FOR DISCHARGE PIPING;771
21.135;9.135 COMPRESSIBILITY FACTOR Z;773
21.136;9.136 DISCHARGE LINE SIZING;774
21.137;9.137 VENT PIPING;774
21.138;9.138 DISCHARGE REACTIVE FORCE;774
21.139;9.139 A RAPID SOLUTION FOR SIZING DEPRESSURING LINES [5C];775
21.140;9.140 HAZARD AND OPERABILITY (HAZOP) STUDIES;776
21.141;9.141 STUDY CO-ORDINATION;777
21.142;9.142 HAZOP OF A BATCH PROCESS;778
21.143;9.143 LIMITATIONS OF HAZOP STUDIES;779
21.144;9.144 HAZARD ANALYSIS (HAZAN);779
21.145;9.145 FAULT TREE ANALYSIS;781
21.146;9.146 INHERENTLY SAFER PLANT DESIGN;782
21.147;GLOSSARY;785
21.148;ACRONYMS AND ABBREVIATIONS;788
21.149;NOMENCLATURE;788
21.150;REFERENCES;790
21.151;FURTHER READING;793
21.152;SELECTED REFERENCES;796
22;APPENDIX A A LIST OF ENGINEERING PROCESS FLOW DIAGRAMS AND PROCESS DATA SHEETS;798
23;APPENDIX B;846
24;APPENDIX C PHYSICAL PROPERTIES OF LIQUIDS AND GASES;854
25;APPENDIX D;890
26;APPENDIX E;962
27;APPENDIX F;976
28;APPENDIX G ANALYTICAL TECHNIQUES;984
29;APPENDIX H NUMERICAL TECHNIQUES;990
30;APPENDIX I SCREENSHOT GUIDE TO ABSOFT COMPILER GRAPHICAL USER INTERFACE;1004
31;INDEX;1012