Cohen | Bayesian Analysis in Natural Language Processing | Buch | 978-1-68173-216-9 | www2.sack.de

Buch, Englisch, 274 Seiten, Hardback, Format (B × H): 191 mm x 235 mm, Gewicht: 689 g

Reihe: Synthesis Lectures on Human La

Cohen

Bayesian Analysis in Natural Language Processing


Erscheinungsjahr 2016
ISBN: 978-1-68173-216-9
Verlag: MORGAN & CLAYPOOL

Buch, Englisch, 274 Seiten, Hardback, Format (B × H): 191 mm x 235 mm, Gewicht: 689 g

Reihe: Synthesis Lectures on Human La

ISBN: 978-1-68173-216-9
Verlag: MORGAN & CLAYPOOL


Natural language processing (NLP) went through a profound transformation in the mid-1980s when it shifted to make heavy use of corpora and data-driven techniques to analyze language. Since then, the use of statistical techniques in NLP has evolved in several ways. One such example of evolution took place in the late 1990s or early 2000s, when full-fledged Bayesian machinery was introduced to NLP. This Bayesian approach to NLP has come to accommodate for various shortcomings in the frequentist approach and to enrich it, especially in the unsupervised setting, where statistical learning is done without target prediction examples.

We cover the methods and algorithms that are needed to fluently read Bayesian learning papers in NLP and to do research in the area. These methods and algorithms are partially borrowed from both machine learning and statistics and are partially developed ""in-house"" in NLP. We cover inference techniques such as Markov chain Monte Carlo sampling and variational inference, Bayesian estimation, and nonparametric modeling. We also cover fundamental concepts in Bayesian statistics such as prior distributions, conjugacy, and generative modeling. Finally, we cover some of the fundamental modeling techniques in NLP, such as grammar modeling and their use with Bayesian analysis.

Cohen Bayesian Analysis in Natural Language Processing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Acknowledgments
- Preliminaries
- Introduction
- Priors
- Bayesian Estimation
- Sampling Methods
- Variational Inference
- Nonparametric Priors
- Bayesian Grammar Models
- Closing Remarks
- Bibliography
- Author's Biography
- Index


Shay Cohen is an Assistant Professor at the Institute for Language, Cognition and Computation at the School of Informatics at the University of Edinburgh. He received his PhD in Language Technologies from Carnegie Mellon University (2011), his MSc in Computer Science from Tel-Aviv University (2004) and his BSc in Mathematics and Computer Science from Tel-Aviv University (2000). He was awarded a Computing Innovation Fellowship for his postdoctoral studies at Columbia University (2011-2013). His research interests are in natural language processing and machine learning, with a focus on problems in structured prediction, such as syntactic and semantic parsing.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.