E-Book, Englisch, 667 Seiten, eBook
Cleophas / Zwinderman Machine Learning in Medicine – A Complete Overview
2. Auflage 2020
ISBN: 978-3-030-33970-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 667 Seiten, eBook
ISBN: 978-3-030-33970-8
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Graduate
Autoren/Hrsg.
Weitere Infos & Material
Preface.- Section I Cluster and Classification Models.- Hierarchical Clustering and K-means Clustering to Identify Subgroups in Surveys (50 Patients).- Density-based Clustering to Identify Outlier Groups in Otherwise Homogeneous Data (50 Patients).- Two Step Clustering to Identify Subgroups and Predict Subgroup Memberships in Individual Future Patients (120 Patients).- Nearest Neighbors for Classifying New Medicines (2 New and 25 Old Opioids).- Predicting High-Risk-Bin Memberships (1445 Families).- Predicting Outlier Memberships (2000 Patients).- Data Mining for Visualization of Health Processes (150 Patients).- Trained Decision Trees for a More Meaningful Accuracy (150 Patients).- Typology of Medical Data (51 Patients).- Predictions from Nominal Clinical Data (450 Patients).- Predictions from Ordinal Clinical Data (450 Patients).- Assessing Relative Health Risks (3000 Subjects).- Measurement Agreements (30 Patients).- Column Proportions for Testing Differences between Outcome Scores (450 Patients).- Pivoting Trays and Tables for Improved Analysis of Multidimensional Data (450 Patients).- Online Analytical Procedure Cubes for a More Rapid Approach to Analyzing Frequencies (450 Patients).- Restructure Data Wizard for Data Classified the Wrong Way (20 Patients).- Control Charts for Quality Control of Medicines (164 Tablet Desintegration Times).- Section II (Log) Linear Models.- Linear, Logistic, and Cox Regression for Outcome Prediction with Unpaired Data (20, 55, and 60 Patients).- Generalized Linear Models for Outcome Prediction with Paired Data (100 Patients and 139 Physicians).- Generalized Linear Models for Predicting Event-Rates (50 Patients).- Factor Analysis and Partial Least Squares (PLS) for Complex-Data Reduction (250 Patients).- Optimal Scaling of High-sensitivity Analysis of Health Predictors (250 Patients).- Discriminant Analysis for Making a Diagnosis from Multiple Outcomes (45 Patients).- Weighted Least Squares for Adjusting Efficacy Data with Inconsistent Spread (78 Patients).- Partial Correlations for Removing Interaction Effects from Efficacy Data (64 Patients).- Canonical Regression for Overall Statistics of Multivariate Data (250 Patients).- Multinomial Regression for Outcome Categories (55 Patients).- Various Methods for Analyzing Predictor Categories (60 and 30 Patients).- Random Intercept Models for Both Outcome and Predictor Categories (55 Patients).- Automatic Regression for Maximizing Linear Relationships (55 Patients).- Simulation Models for Varying Predictors (9000 Patients).- Generalized Linear Mixed Models for Outcome Prediction from Mixed Data (20 Patients).- Two Stage Least Squares forLinear Models with Problematic Predictors (35 Patients).- Autoregressive Models for Longitudinal Data (120 Monthly Population Records).- Variance Components for Assessing the Magnitude of Random Effects (40 Patients).- Ordinal Scaling for Clinical Scores with Inconsistent Intervals (900 Patients).- Loglinear Models for Assessing Incident Rates with Varying Incident Risks (12 Populations).- Loglinear Models for Outcome Categories (445 Patients).- More on Polytomous Outcome Regressions (450 Patients).- Heterogeneity in Clinical Research: Mechanisms Responsible (20 Studies).- Performance Evaluation of Novel Diagnostic Tests (650 and 588 Patients).- Quantile - Quantile Plots, a Good Start for Looking at Your Medical Data (50 Cholesterol Measurements and 52 Patients).- Rate Analysis of Medical Data Better than Risk Analysis (52 Patients) .- Trend Tests Will Be Statistically Significant if Traditional Tests Are not (30 and 106 Patients).- Doubly Multivariate Analysis of Variance for Multiple Observations from Multiple Outcome Variables (16 Patients).- Probit Models for Estimating Effective Pharmacological Treatment Dosages (14 Tests).- Interval Censored Data Analysis for Assessing Mean Time to Cancer Relapse (51 Patients).- Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for CauseEffect Relationships I (35 Patients).- Structural Equation Modeling with SPSS Analysis of Moment Structures (Amos) for Cause Effect Relationships II (35 Patients).- Firth's Bias-adjusted Estimates for Biased Logistic Data Models (23 Challenger launchings).- Omics Research (125 Patients, 24 Predictor Variables).- Sparse Canonical Correlation Analysis (12209 Genes in 45 Glioblastoma Carriers).- Eigenvalues, Eigenvectors and Eigenfunctions (45 and 250 Patients).- Section III Rules Models.- Neural Networks for Assessing Relationships that are Typically Nonlinear (90 Patients).- Complex Samples Methodologies for Unbiased Sampling (9,678 Persons).- Correspondence Analysis for Identifying the Best of Multiple Treatments in Multiple Groups (217 Patients).- Decision Trees for Decision Analysis (1004 and 953 Patients).- Multidimensional Scaling for Visualizing Experienced Drug Efficacies (14 Pain-killers and 42 Patients).- Stochastic Processes for Long Term Predictions from Short Term Observations.- Optimal Binning for Finding High Risk Cut-offs (1445 Families).- Conjoint Analysis for Determining the Most Appreciated Properties of Medicines to Be Developed (15 Physicians).- Item Response Modeling for Analyzing Quality of Life with Better Precision (1000 Patients).- Survival Studies with Varying Risks of Dying (50 and 60 Patients).- Fuzzy Logic for Improved Precision of Pharmacological Data Analysis (9 Induction Dosages).- Automatic Data Mining for the Best Treatment of a Disease (90 Patients).- Pareto Charts for Identifying the Main Factors of Multifactorial Outcomes (2000 Admissions to Hospital).- Radial Basis Neural Networks for Multidimensional Gaussian Data (90 persons).- Automatic Modeling for Drug Efficacy Prediction (250 Patients).- Automatic Modeling for Clinical Event Prediction (200 Patients).- Automatic Newton Modeling in Clinical Pharmacology (15 Alfentanil dosages, 15 Quinidine time-concentration relationships).- Spectral Plots for High Sensitivity Assessment of Periodicity (6 Years’ Monthly C Reactive Protein Levels).- Runs Test for Identifying Best Analysis Models (21 Estimates of Quantity and Quality of Patient Care).- Evolutionary Operations for Health Process Improvement (8 Operation Room Settings).- Bayesian Networks for Cause Effect Modeling (600 Patients).- Support Vector Machines for Imperfect Nonlinear Data (200 Patients).- Multiple Response Sets for Visualizing Clinical Data Trends (811 Patient Visits).- Protein and DNA Sequence Mining.- Iteration Methods for Crossvalidation (150 Patients).- Testing Parallel-groups with Different Sample Sizes and Variances (5 Parallel-group Studies).- Association Rules between Exposure and Outcome (50 and 60 Patients).- Confidence Intervals for Proportions and Differences in Proportions (100 and 75 Patients).- Ratio Statistics for Efficacy Analysis of New Drugs 50 Patients).- Fifth Order Polynomes of Circadian Rhythms (1 Patient).- Gamma Distribution for Estimating the Predictors of MedicalOutcomes (110 Patients).- Index.