E-Book, Englisch, Band 270, 464 Seiten
Claeys / Simoen Metal Impurities in Silicon- and Germanium-Based Technologies
1. Auflage 2018
ISBN: 978-3-319-93925-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Origin, Characterization, Control, and Device Impact
E-Book, Englisch, Band 270, 464 Seiten
Reihe: Springer Series in Materials Science
ISBN: 978-3-319-93925-4
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book provides a unique review of various aspects of metallic contamination in Si and Ge-based semiconductors. It discusses all of the important metals including their origin during crystal and/or device manufacturing, their fundamental properties, their characterization techniques and their impact on electrical devices' performance. Several control and possible gettering approaches are addressed. The book offers a valuable reference guide for all researchers and engineers studying advanced and state-of-the-art micro- and nano-electronic semiconductor devices and circuits. Adopting an interdisciplinary approach, it combines perspectives from e.g. material science, defect engineering, device processing, defect and device characterization, and device physics and engineering.
Cor Claeys is a Professor at the KU Leuven (Belgium) since 1990. He was at imec, Leuven, Belgium from 1984 till 2016. His main interests are silicon technology, device physics, low-frequency noise phenomena, radiation effects, defect engineering and material characterization. He has co-edited a book on 'Low Temperature Electronics' and 'Germanium-Based Technologies: From Materials to Devices' and co-authored monographs on 'Radiation Effects in Advanced Semiconductor Materials and Devices,' 'Fundamental and Technological Aspects of Extended Defects in Germanium' and 'Random Telegraph Signals in Semiconductor Devices.' He (co)authored 15 book chapters, over 1100 conference presentations and more than 1300 technical papers. He is editor/co-editor of 60 Conference Proceedings. Prof. Claeys is a Fellow of the Electrochemical Society and of the IEEE. He was Founder of the IEEE Electron Devices Benelux Chapter, Chair of the IEEE Benelux Section, elected Board of Governors Member of the Electron Devices Society and the EDS Vice President for Chapters and Regions. He was EDS President in 2008-2009 and Division Director on the IEEE Board of Directors in 2012-2013. He is a recipient of the IEEE Third Millennium Medal and received the IEEE EDS Distinguished Service Award.
Within the Electrochemical Society, he was the Chair of the Electronics & Photonics Division from 2001 to 2003. In 2004, he received the Electronics and Photonics Division Award. In 2016 he received the Semi China Special Recognition Award for outstanding involvement in the China Semiconductor Technology International Conference (CSTIC).
Eddy Simoen obtained his Bachelor's (1976-1978) and Master's degrees in Physics Engineering (1978-1980), as well as his Ph.D. in Engineering (1985), from Ghent University (Belgium). He is currently a Specialist at imec (Leuven, Belgium), involved in the study of defect and strain engineering in high-mobility and epitaxial substrates and defect studies in germanium and III-V compounds (AlN; GaN, InP, etc). Another current focus point is the study of 1-transistor memories based on bulk FinFET and Ultra-thin Buried Oxide (UTBOX) Silicon-on-Insulator (SOI), using low-frequency noise. In 2013, he was appointed a part-time Professor at Ghent University. He is a member of the IEEE and ECS and became an ECS Fellow in 2016.
In these fields, he has (co-) authored over 1500 Journal and Conference papers, 12 book chapters and a monograph on Radiation Effects in Advanced Semiconductor Devices and Materials (Springer, 2002). He was also a co-editor of the book on Germanium-based Technologies - from Materials to Devices (Elsevier March 2007; Chinese translation 2010). Another book on the 'Fundamental and Technological Aspects of Extended Defects in Germanium' was published by Springer in January 2009. In 2016 he published 'Random Telegraph Signals in Semiconductor Devices' with IOP. He is also a co-inventor of two patents.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;7
2;Contents;9
3;Abbreviations;14
4;Symbols;21
5;Greek Symbols;29
6;1 Introduction;32
6.1;References;38
7;2 Basic Properties of Transition Metals in Semiconductors;39
7.1;2.1 Solid Solubility;40
7.2;2.2 Diffusivity;43
7.2.1;2.2.1 Ion Pairing and Doping Effects;46
7.3;2.3 Segregation and Precipitation;50
7.4;2.4 Electrical Properties of Transition Metals;56
7.5;References;62
8;3 Source of Metals in Si and Ge Crystal Growth and Processing;66
8.1;3.1 Crystal Growth;67
8.2;3.2 Wet Wafer Cleaning Processes;70
8.2.1;3.2.1 Contamination in Si Cleaning Technology;70
8.2.2;3.2.2 Contamination in Ge Cleaning Technology;75
8.3;3.3 Dry Vapor Phase Wafer Cleaning;76
8.4;3.4 Photoresist Deposition and Stripping;76
8.5;3.5 Wafer Handling;79
8.6;3.6 Ion Implantation;80
8.7;3.7 Thermal Processing;84
8.8;3.8 Metal Layers in Device Fabrication;87
8.8.1;3.8.1 Silicidation and Germanidation;88
8.8.2;3.8.2 Metallization;91
8.8.3;3.8.3 3D Integration—Through Silicon Vias (TSV);92
8.8.4;3.8.4 Ferroelectric Memories;94
8.9;References;96
9;4 Characterization and Detection of Metals in Silicon and Germanium;104
9.1;4.1 Chemical Analysis of Metals;105
9.1.1;4.1.1 Elemental Analysis of Surface Metal Contamination;106
9.1.2;4.1.2 Elemental Analysis of Bulk Metal Contamination;108
9.1.3;4.1.3 Electron Paramagnetic Resonance;111
9.1.4;4.1.4 Mössbauer Spectroscopy;114
9.2;4.2 Structural Analysis;115
9.2.1;4.2.1 Structural Analysis of Metal Precipitates;116
9.2.2;4.2.2 Structural Analysis of Metal-Related Point Defects;118
9.3;4.3 Electrical Analysis;118
9.3.1;4.3.1 Theoretical and Practical Considerations for Lifetime Measurements;120
9.3.2;4.3.2 Surface Photo Voltage Lifetime Analysis;124
9.3.3;4.3.3 PhotoConductance Decay (PCD) and QSS-PC Method;127
9.3.4;4.3.4 ELYMAT;129
9.3.5;4.3.5 PL Imaging;131
9.3.6;4.3.6 Carrier Lifetime by IR Imaging;133
9.3.7;4.3.7 Lifetime Mapping of Extended Defects;134
9.3.8;4.3.8 MOS Generation Lifetime Techniques;137
9.3.9;4.3.9 Deep-Level Transient Spectroscopy;139
9.4;4.4 Strategy for Metal Contamination Monitoring;143
9.5;References;145
10;5 Electrical Activity of Iron and Copper in Si, SiGe and Ge;153
10.1;5.1 Iron;154
10.1.1;5.1.1 Configurations of Fe;154
10.1.1.1;5.1.1.1 Interstitial and Substitutional Fe;154
10.1.1.2;5.1.1.2 Dopant-Iron Pairs;156
10.1.1.3;5.1.1.3 Small Fe-Related Clusters and Fe-Related Complexes;159
10.1.1.4;5.1.1.4 Fe Precipitation;160
10.1.2;5.1.2 Electrical Properties of Fe;164
10.1.2.1;5.1.2.1 Fei and FeA Pairs in Silicon;164
10.1.2.2;5.1.2.2 Fe-Related Point Defects in Si and Ge;170
10.1.2.3;5.1.2.3 Fe-Related Clusters and Precipitates;173
10.1.2.4;5.1.2.4 Fe Activation of Extended Defects;174
10.1.3;5.1.3 Detection and Identification of Fe in Silicon;175
10.2;5.2 Copper;179
10.2.1;5.2.1 Configurations of Copper;180
10.2.1.1;5.2.1.1 Cu-Related Point Defects;180
10.2.1.2;5.2.1.2 Heterogeneous Precipitation of Copper;181
10.2.1.3;5.2.1.3 Homogeneous Precipitation of Copper;186
10.2.1.4;5.2.1.4 Precipitation Versus Out-Diffusion;188
10.2.2;5.2.2 Electrical Activity of Cu;191
10.2.2.1;5.2.2.1 Copper-Related Point Defects;191
10.2.2.2;5.2.2.2 Electrical Activity of Precipitated Copper;195
10.2.2.3;5.2.2.3 Copper Activation and Passivation of Extended Defects;198
10.2.3;5.2.3 Detection of Copper;200
10.2.3.1;5.2.3.1 Lifetime-Based Sensitive Copper Detection;200
10.2.3.2;5.2.3.2 Transient Ion Drift Analysis of Copper in Silicon;208
10.3;References;210
11;6 Electrical Properties of Metals in Si and Ge;225
11.1;6.1 Nickel in Si and Ge;226
11.1.1;6.1.1 Ni-related Point Defects and Complexes;226
11.1.2;6.1.2 Precipitation and Co-precipitation of Ni;227
11.1.2.1;6.1.2.1 Homogeneous and Heterogeneous Precipitation of NiSi2;227
11.1.2.2;6.1.2.2 Co-precipitation of Nickel in Silicon;230
11.1.3;6.1.3 Electrical and Optical Activity of Ni;232
11.1.3.1;6.1.3.1 Nickel-Related Point Defects and Complexes;232
11.1.3.2;6.1.3.2 Electrically Active Point Defects in Ge and SiGe;234
11.1.3.3;6.1.3.3 Electrical Activity of Nickel Precipitates;235
11.1.3.4;6.1.3.4 Nickel-Decorated Extended Defects;239
11.1.4;6.1.4 Impact of Ni on Recombination Lifetime;240
11.2;6.2 Cobalt in Si and Ge;243
11.2.1;6.2.1 Co-related Species in Si;243
11.2.1.1;6.2.1.1 Atomic and Clustered Species;243
11.2.1.2;6.2.1.2 Buried CoSi2 Formation;244
11.2.2;6.2.2 Electrical and Optical Activity of Co in Si;245
11.2.2.1;6.2.2.1 Levels from Resistivity and Photoconductivity;246
11.2.2.2;6.2.2.2 Deep Levels from Space-Charge Transient Techniques (DLTS);246
11.2.3;6.2.3 Impact on Lifetime;251
11.3;6.3 Chromium in Si and Ge;254
11.3.1;6.3.1 Configurations of Cr in Si;254
11.3.2;6.3.2 Electrical and Optical Activity of Cr in Si;254
11.3.2.1;6.3.2.1 Electrical Properties;254
11.3.2.2;6.3.2.2 Optical Properties;257
11.3.2.3;6.3.2.3 Impact of Cr on Lifetime in Silicon;258
11.3.2.4;6.3.2.4 Identification of Cr in Silicon by Lifetime Measurements;261
11.4;6.4 Titanium;262
11.5;6.5 Molybdenum;264
11.6;6.6 Palladium;267
11.7;6.7 Platinum;269
11.8;6.8 Gold;271
11.9;6.9 Scandium;274
11.10;6.10 Vanadium;274
11.11;6.11 Manganese;276
11.12;6.12 Zinc;278
11.13;6.13 Zirconium;280
11.14;6.14 Niobium;280
11.15;6.15 Ruthenium;281
11.16;6.16 Rhodium;283
11.17;6.17 Silver;285
11.18;6.18 Cadmium;287
11.19;6.19 Hafnium;287
11.20;6.20 Tantalum;289
11.21;6.21 Tungsten;289
11.22;6.22 Rhenium–Osmium;290
11.23;6.23 Iridium;292
11.24;6.24 Mercury;294
11.25;References;294
12;7 Impact of Metals on Silicon Devices and Circuits;314
12.1;7.1 MOS Capacitors;315
12.1.1;7.1.1 Impact of Metal Contamination on MOS Capacitors;316
12.1.1.1;7.1.1.1 Diffusion, Precipitation and Segregation of Metals in Dielectric Layers;316
12.1.1.2;7.1.1.2 Impact of Fe on MOS Capacitors;319
12.1.1.3;7.1.1.3 Impact of Nickel on MOS Capacitors;320
12.1.2;7.1.2 Impact of Copper on MOS Capacitors;321
12.1.2.1;7.1.2.1 Basic Properties of Copper in SiO2;321
12.1.2.2;7.1.2.2 Diffusion of Cu in Low-? Dielectrics;323
12.1.2.3;7.1.2.3 Impact of Cu on MOS Capacitors;325
12.1.2.4;7.1.2.4 Impact on Interlayer Dielectric Integrity;331
12.2;7.2 Impact on p-n Junction Devices and Schottky Barriers;333
12.2.1;7.2.1 Metal Contamination in p-n Junctions;333
12.2.1.1;7.2.1.1 Impact of Copper;333
12.2.1.2;7.2.1.2 Impact of Other TMs;336
12.2.2;7.2.2 Silicidation-Induced Metal Contamination;337
12.2.2.1;7.2.2.1 Ti-Silicidation;337
12.2.2.2;7.2.2.2 Co-silicidation;338
12.2.2.3;7.2.2.3 Ni-Silicidation;342
12.2.3;7.2.3 Metal Contamination in Silicon Solar Cells;348
12.2.3.1;7.2.3.1 Impact Defects on Solar Cell Parameters;349
12.2.3.2;7.2.3.2 Impact Specific TMs on Solar Cells;351
12.2.3.3;7.2.3.3 Acceptable Metal Levels in Mc-Si Solar Cells;354
12.2.4;7.2.4 Impact on Schottky Barriers;355
12.3;7.3 Impact on Transistors and on Circuit Operation and Yield;358
12.3.1;7.3.1 Impact on Transistors;358
12.3.2;7.3.2 Impact on Circuits;359
12.3.3;7.3.3 Impact on Yield;363
12.4;References;363
13;8 Gettering and Passivation of Metals in Silicon and Germanium;378
13.1;8.1 Gettering Strategies;379
13.1.1;8.1.1 Metal Gettering Mechanisms;381
13.2;8.2 Backside Gettering Mechanisms;383
13.2.1;8.2.1 Glass Layer Gettering;383
13.2.2;8.2.2 Thin Layer Gettering;386
13.2.2.1;8.2.2.1 Aluminum Films;386
13.2.2.2;8.2.2.2 Silicon Nitride and Polysilicon Layers;387
13.2.3;8.2.3 Ion Implantation Gettering;389
13.3;8.3 Intrinsic Gettering Mechanisms;390
13.4;8.4 Frontside Gettering Techniques;396
13.4.1;8.4.1 Buried Epitaxial or Porous Si Layer;396
13.4.2;8.4.2 Ion Implantation;397
13.4.2.1;8.4.2.1 Nano Cavities;399
13.4.2.2;8.4.2.2 Near-Surface Proximity Gettering;401
13.5;8.5 Gettering in SOI Material;403
13.5.1;8.5.1 SIMOX SOI Material;403
13.5.2;8.5.2 Ultra-thin Body and BOX (UTBB);405
13.6;8.6 Gettering Processes for Photovoltaics;405
13.7;8.7 Modeling Gettering Processes;406
13.8;References;407
14;9 Modeling of Metal Properties in Si, Si1?xGex and Ge;416
14.1;9.1 Modeling Approaches;417
14.1.1;9.1.1 EPR-Based Models;417
14.1.2;9.1.2 First-Principles Calculations;418
14.1.3;9.1.3 Calculation of Parameters in DFT;421
14.2;9.2 Configurations of Individual Metal Atoms;423
14.2.1;9.2.1 Trends in the Properties of 3d TMs in Si and Ge;423
14.2.2;9.2.2 Iron in Si and SiGe;429
14.2.3;9.2.3 Copper in Si;430
14.2.4;9.2.4 Cobalt in Si;431
14.2.5;9.2.5 Vanadium in Si;432
14.2.6;9.2.6 Manganese in Si and Ge;432
14.3;9.3 Diffusion of Metal Atoms in Si and Ge;434
14.3.1;9.3.1 Elastic Energy Approach;434
14.3.2;9.3.2 Thermodynamic Approach;436
14.3.3;9.3.3 DFT and MD Calculations;436
14.4;9.4 Interactions of Metals with Dopants, H, O, C in Si and Ge;439
14.4.1;9.4.1 Interaction with Dopants;439
14.4.2;9.4.2 Interaction with Hydrogen;443
14.4.3;9.4.3 Interaction with Oxygen and Carbon;446
14.5;9.5 Interactions of Metals with Other Defects, Clustering and Gettering;447
14.5.1;9.5.1 Metal Pairs, Clusters and Precipitates;447
14.5.2;9.5.2 Interaction with Implantation and Extended Defects;450
14.5.3;9.5.3 First-Principles Studies of Metal Gettering;452
14.6;References;455
15;Index;461




