From Materials to Devices
E-Book, Englisch, 476 Seiten
ISBN: 978-0-08-047490-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
The book also covers applications and the use of Ge for optoelectronics, detectors and solar cells. An ideal reference work for students and scientists working in the field of physics of semiconductor devices and materials, as well as for engineers in research centres and industry. Both the newcomer and the expert should benefit from this unique book.
* State-of-the-art information available for the first time as an all-in-source
* Extensive reference list making it an indispensable reference book
* Broad coverage from fundamental aspects up to industrial applications
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Copyright Page;5
3;Germanium-Based Technologies;4
4;Contents;6
5;Editors;14
6;Contributors;15
7;List of Acronyms;18
8;List of Symbols;22
9;Introduction;26
9.1;1 Introduction;26
9.2;2 Historical Perspective and Milestones;26
9.3;3 Ge as a Novel ULSI Substrate: Opportunities and Challenges;30
9.4;4 Outline of the Book;31
9.5;References;34
10;Chapter 1 Germanium Materials;38
10.1;1.1 Introduction;38
10.2;1.2 Bulk Wafer Manufacturing;39
10.2.1;1.2.1 Germanium raw materials: supply and production flow sheet;39
10.2.1.1;1.2.1.1 Supply;39
10.2.1.2;1.2.1.2 Production flow sheet;41
10.2.2;1.2.2 Germanium crystal growth;43
10.2.2.1;1.2.2.1 Introduction and specific features of Czochralski Ge crystal growth;43
10.2.2.2;1.2.2.2 Ge single crystals for IR optics;44
10.2.2.3;1.2.2.3 HP-Ge crystals for radiation detectors;45
10.2.2.4;1.2.2.4 Dislocation-free Ge crystals;46
10.2.2.5;1.2.2.5 Modeling of Ge crystal growth;48
10.2.3;1.2.3 Germanium wafer manufacturing;49
10.2.3.1;1.2.3.1 Introduction;49
10.2.3.2;1.2.3.2 Wafer preparation: general remarks;50
10.2.3.3;1.2.3.3 Wafer preparation: process steps;52
10.2.3.4;1.2.3.4 Germanium recycling;57
10.3;1.3 GOI Substrates;57
10.3.1;1.3.1 Back-grind SOI;58
10.3.2;1.3.2 GOI substrates by layer transfer;60
10.3.2.1;1.3.2.1 Donor wafers;60
10.3.2.2;1.3.2.2 GOI realization;60
10.3.2.3;1.3.2.3 Characterization of GOI substrates;61
10.3.2.4;1.3.2.4 GOI MOSFETs;63
10.3.2.5;1.3.2.5 GOI as III-V epitaxy template;63
10.4;1.4 General Conclusion;63
10.5;References;64
11;Chapter 2 Grown-in Defects in Germanium;68
11.1;2.1 Introduction;68
11.2;2.2 Intrinsic Point Defects in Germanium;68
11.2.1;2.2.1 Simulation of intrinsic point defect properties;69
11.2.2;2.2.2 Experimental data on vacancy properties;70
11.2.3;2.2.3 Application of the Voronkov model to germanium;71
11.3;2.3 Extrinsic Point Defects;74
11.3.1;2.3.1 Dopants;74
11.3.2;2.3.2 Neutral point defects;74
11.3.3;2.3.3 Carbon;75
11.3.4;2.3.4 Hydrogen;75
11.3.5;2.3.5 Oxygen;77
11.3.6;2.3.6 Nitrogen;77
11.3.7;2.3.7 Silicon;78
11.4;2.4 Dislocation Formation During Czochralski Growth;79
11.4.1;2.4.1 Thermal simulation;79
11.4.2;2.4.2 Development of mechanical stresses;79
11.4.3;2.4.3 Mechanical properties of germanium;80
11.4.4;2.4.4 Dislocation nucleation and multiplication during crystal pulling;81
11.4.5;2.4.5 Electrical impact of dislocations in germanium;84
11.5;2.5 Point Defect Clustering;86
11.5.1;2.5.1 Experimental observations of vacancy clustering;86
11.5.2;2.5.2 Modeling and simulation of vacancy cluster formation;88
11.6;2.6 Conclusions;90
11.7;Acknowledgements;90
11.8;References;90
12;Chapter 3 Diffusion and Solubility of Dopants in Germanium;94
12.1;3.1 Introduction;94
12.2;3.2 Diffusion in Semiconductors;94
12.2.1;3.2.1 Diffusion mechanisms;95
12.2.2;3.2.2 Self-diffusion;96
12.3;3.3 Intrinsic Point Defects in Germanium;99
12.3.1;3.3.1 Quenching;99
12.3.2;3.3.2 Irradiation;101
12.4;3.4 Self- and Group IV Diffusion in Germanium and Silicon;102
12.4.1;3.4.1 Radioactive tracer experiments;103
12.4.2;3.4.2 Isotope effects and Group IV (Si;Sn) diffusion in Ge;104
12.4.3;3.4.3 Doping and pressure effects;107
12.4.4;3.4.4 Diffusion of Ge in Si;108
12.5;3.5 Solubility of Impurities in Germanium;110
12.6;3.6 Diffusion of Group III and V Dopants in Germanium;113
12.6.1;3.6.1 Group III acceptor diffusion;114
12.6.1.1;3.6.1.1 Boron;114
12.6.1.2;3.6.1.2 Aluminum;115
12.6.1.3;3.6.1.3 Indium and gallium;116
12.6.2;3.6.2 Group V donor diffusion;116
12.6.2.1;3.6.2.1 Phosphorus;116
12.6.2.2;3.6.2.2 Arsenic;117
12.6.2.3;3.6.2.3 Antimony;118
12.6.3;3.6.3 Electric field effects on dopant diffusion in Ge;118
12.6.4;3.6.4 Summary;119
12.7;3.7 General Conclusion;120
12.8;References;120
13;Chapter 4 Oxygen in Germanium;124
13.1;4.1 Introduction;124
13.2;4.2 Interstitial Oxygen;125
13.2.1;4.2.1 Measurement of oxygen concentration;125
13.2.2;4.2.2 Diffusion and solubility;127
13.2.3;4.2.3 Structure of the vibration spectrum and defect model;129
13.3;4.3 TDs and the Oxygen Dimer;134
13.3.1;4.3.1 Electronic states of TDs;135
13.3.2;4.3.2 Vibrational spectrum of TDs;140
13.3.3;4.3.3 Vibrational spectrum of the oxygen dimer;145
13.4;4.4 Infrared Absorption of Oxygen Precipitates;149
13.5;4.5 The Vacancy-Oxygen Defect;151
13.6;4.6 Conclusions;153
13.7;References;153
14;Chapter 5 Metals in Germanium;158
14.1;5.1 Introduction;158
14.2;5.2 Copper in Germanium;159
14.2.1;5.2.1 Distribution coefficient k[sub(d)];159
14.2.2;5.2.2 Configurations of atomic Cu in Ge;160
14.2.3;5.2.3 The dissociative copper diffusion mechanism;162
14.2.4;5.2.4 Impact of doping density on Cu diffusion and solubility;165
14.2.5;5.2.5 Dissociative versus kick-out mechanism for copper diffusion in germanium;167
14.2.6;5.2.6 Precipitation of copper in germanium;169
14.2.7;5.2.7 Energy levels and capture cross sections of substitutional copper;171
14.2.8;5.2.8 Energy level for interstitial copper and Cu[sub(s)]-Cu[sub(i)] pairs;176
14.2.9;5.2.9 Impact of copper on carrier lifetime in germanium;178
14.3;5.3 Ag, Au and Pt in Germanium;180
14.3.1;5.3.1 Distribution coefficient, solubility and diffusivity;180
14.3.2;5.3.2 Energy levels and capture cross sections;185
14.3.3;5.3.3 Impact on carrier lifetime;189
14.4;5.4 Nickel in Germanium;190
14.4.1;5.4.1 Solubility and diffusivity of Ni in Ge;190
14.4.2;5.4.2 Energy levels and capture cross sections of Ni in Ge;191
14.4.3;5.4.3 Impact on carrier lifetime;193
14.5;5.5 TMs in Germanium;196
14.5.1;5.5.1 Iron;196
14.5.2;5.5.2 Cobalt;197
14.5.3;5.5.3 Manganese;197
14.5.4;5.5.4 Other TMs;198
14.5.4.1;5.5.4.1 Chromium;198
14.5.4.2;5.5.4.2 Zirconium;199
14.5.4.3;5.5.4.3 Titanium and vanadium;199
14.6;5.6 Chemical Trends in the Properties of Metals in Ge;199
14.6.1;5.6.1 Electrical properties;199
14.6.2;5.6.2 Optical properties of metals in germanium;201
14.6.3;5.6.3 Trends in the impact on carrier lifetime in Ge;202
14.7;5.7 Conclusions;207
14.8;References;207
15;Chapter 6 Ab-Initio Modeling of Defects in Germanium;214
15.1;6.1 Introduction;214
15.2;6.2 Quantum Mechanical Methods;215
15.2.1;6.2.1 Clusters and supercells;216
15.3;6.3 Kohn–Sham and Occupancy Levels;217
15.4;6.4 Formation Energies, Vibrational Modes, Energy levels;218
15.5;6.5 Defect Modeling in Ge;219
15.6;6.6 Defects in Germanium;220
15.6.1;6.6.1 Vacancies and divacancies in Ge;222
15.6.2;6.6.2 The self-interstitial;225
15.6.3;6.6.3 Nitrogen defects;225
15.6.4;6.6.4 Carbon in germanium;226
15.6.5;6.6.5 Oxygen in germanium;226
15.6.6;6.6.6 Thermal donors;228
15.6.7;6.6.7 Hydrogen in germanium;229
15.7;6.7 Electrical Levels of Defects;230
15.8;6.8 Summary;232
15.9;References;233
16;Chapter 7 Radiation Performance of Ge Technologies;238
16.1;7.1 Introduction;238
16.2;7.2 Interaction of Radiation with Solids;239
16.2.1;7.2.1 Damage processes;239
16.2.2;7.2.2 Comparison of electron, gamma ray, neutron and proton damage;242
16.2.3;7.2.3 Ion-implantation damage;244
16.3;7.3 Primary Radiation-Induced Defects and their Interactions with Impurities in Crystalline Ge;246
16.3.1;7.3.1 Frenkel-pairs, the lattice vacancy, divacancy and self-interstitial atom in Ge;246
16.3.2;7.3.2 Interaction of the intrinsic points defects with impurities in Ge;248
16.3.3;7.3.3 Ion-implantation-induced damage: multi-vacancy and multi-self-interstitial complexes in Ge;252
16.4;7.4 Effects on Devices;254
16.5;7.5 Conclusions;256
16.6;References;256
17;Chapter 8 Electrical Performance of Ge Devices;260
17.1;8.1 Introduction;260
17.2;8.2 Germanium p–n Junctions;261
17.2.1;8.2.1 Theory of a large-area p–n junction;262
17.2.2;8.2.2 Theory of a planar p–n junction;266
17.2.3;8.2.3 Theory of an ideal germanium p–n junction;268
17.2.4;8.2.4 Germanium bulk p–n junction diodes;269
17.2.5;8.2.5 State-of-the-art shallow germanium p–n junctions;271
17.3;8.3 Germanium-Based Gate Stacks;273
17.3.1;8.3.1 Equivalent oxide thickness;273
17.3.2;8.3.2 Ge/HfO[sub(2)] gate stacks;274
17.3.3;8.3.3 Passivation by an ultra-thin GeON interlayer;275
17.3.4;8.3.4 Si surface passivation;279
17.3.5;8.3.5 PH[sub(3)] surface passivation;286
17.3.6;8.3.6 Alternative high-k on Ge;287
17.4;8.4 Conclusion;288
17.5;Acknowledgements;289
17.6;References;289
18;Chapter 9 Device Modeling;294
18.1;9.1 Introduction;294
18.2;9.2 Modeling Germanium versus Silicon;295
18.3;9.3 Band Structure;297
18.3.1;9.3.1 Conduction band of bulk germanium;297
18.3.2;9.3.2 Valence band of bulk germanium;299
18.3.3;9.3.3 Energy dispersion in germanium inversion layers: electrons;302
18.3.4;9.3.4 Energy dispersion in germanium inversion layers: holes;305
18.4;9.4 Performance Limit;306
18.4.1;9.4.1 Analytical expression for the ballistic current;306
18.4.2;9.4.2 Results: Ge versus Si MOSFETs;308
18.5;9.5 Semi-classical Transport;310
18.5.1;9.5.1 BTE: bulk semiconductor;311
18.5.2;9.5.2 BTE: 2D inversion layers;312
18.5.3;9.5.3 Solution of the BTE: methods based on the moments;312
18.5.4;9.5.4 Solution of the BTE: MC for bulk Ge;313
18.5.5;9.5.5 MC with quantum corrections;315
18.5.6;9.5.6 Multi-subband MC;315
18.6;9.6 Conclusions;317
18.7;References;318
19;Chapter 10 Nanoscale Germanium MOS Dielectrics and Junctions;322
19.1;10.1 Introduction;322
19.2;10.2 Germanium Oxynitride Dielectrics;322
19.2.1;10.2.1 Germanium oxynitride synthesis and properties;323
19.2.2;10.2.2 Basic MOS electrical characterizations;326
19.2.3;10.2.3 Dielectric-substrate interface analyses;329
19.2.4;10.2.4 Dielectric leakage behavior;333
19.2.5;10.2.5 Summary;333
19.3;10.3 High-permittivity Metal Oxide Dielectrics;335
19.3.1;10.3.1 High-k dielectrics selection criteria;335
19.3.2;10.3.2 ALD of high-k dielectrics;336
19.3.2.1;10.3.2.1 ALD of zirconia;337
19.3.2.2;10.3.2.2 ALD of hafnia;341
19.3.3;10.3.3 UVO of high-k dielectrics;348
19.3.3.1;10.3.3.1 UVO of zirconia;348
19.3.3.2;10.3.3.2 Zirconia–germanium interface photoemission spectroscopy;350
19.3.3.3;10.3.3.3 UVO of hafnia;357
19.3.4;10.3.4 Other high-k deposition techniques;358
19.3.4.1;10.3.4.1 Metal-organic chemical vapor deposition of hafnia;358
19.3.4.2;10.3.4.2 PVD of zirconia and hafnia;359
19.3.4.3;10.3.4.3 Atomic oxygen beam deposition of hafnia;360
19.3.5;10.3.5 Nanoscale dielectrics leakage and scalability;361
19.3.6;10.3.6 Summary;364
19.4;10.4 Shallow Junctions in Germanium;364
19.4.1;10.4.1 Ion implantation doping;366
19.4.1.1;10.4.1.1 p-type junction activation with furnace anneal;366
19.4.1.2;10.4.1.2 Complementary junction activation with rapid thermal anneal;369
19.4.1.3;10.4.1.3 n-type junction activation dependences;371
19.4.2;10.4.2 SSD doping;376
19.4.2.1;10.4.2.1 n-type junction activation and diffusion;376
19.4.2.2;10.4.2.2 Dopant deactivation within activated junctions;379
19.4.3;10.4.3 Metal germanide contacts;380
19.4.4;10.4.4 Summary;382
19.5;10.5 General Conclusion;382
19.6;References;383
20;Chapter 11 Advanced Germanium MOS Devices;390
20.1;11.1 Introduction;390
20.2;11.2 The Quest for High Mobility MOSFET Channel;390
20.2.1;11.2.1 Challenges to scaling conventional CMOS;391
20.2.2;11.2.2 High mobility channel justification and selection;394
20.3;11.3 Relaxed Bulk Channel Germanium MOSFETs;395
20.3.1;11.3.1 P-channel MOSFETs;396
20.3.1.1;11.3.1.1 Germanium oxynitride gate dielectric;396
20.3.1.2;11.3.1.2 Zirconium-based gate dielectric;396
20.3.1.3;11.3.1.3 Hafnia gate dielectric;398
20.3.2;11.3.2 n-channel MOSFETs;399
20.4;11.4 Strained Epitaxial Channel Germanium MOSFETs;401
20.4.1;11.4.1 Surface strained epitaxial channel;402
20.4.2;11.4.2 Buried strained epitaxial channel;402
20.5;11.5 Germanium-on-Insulator MOSFETs;404
20.6;11.6 Schottky Source-Drain Germanium MOSFETs;406
20.7;11.7 Germanium Nanowire MOSFETs;409
20.8;11.8 Conclusions;410
20.9;References;410
21;Chapter 12 Alternative Ge Applications;414
21.1;12.1 Introduction;414
21.2;12.2 Attractive Properties for Alternative Applications;414
21.2.1;12.2.1 Growth modes;415
21.2.2;12.2.2 Strain influence on electronic alignment;415
21.2.3;12.2.3 Wave guiding;416
21.2.4;12.2.4 Transport properties;417
21.2.5;12.2.5 Brillouin zone folding;418
21.3;12.3 Optoelectronics;418
21.3.1;12.3.1 Integration aspects;418
21.3.2;12.3.2 Detectors for the visible to the NIR;419
21.3.3;12.3.3 Modulators;427
21.3.4;12.3.4 Waveguides;428
21.3.5;12.3.5 Optical emitter;430
21.4;12.4 Solar Cells;430
21.4.1;12.4.1 Tandem cells;431
21.4.2;12.4.2 Artificial substrates for group III/V solar cells;433
21.5;12.5 QD Applications;434
21.5.1;12.5.1 Stressors;434
21.5.2;12.5.2 Memories;435
21.5.3;12.5.3 Tunneling;435
21.6;12.6 Field Effect Transistors (other than MOS);435
21.6.1;12.6.1 MODFET;435
21.6.2;12.6.2 DotFET;437
21.7;12.7 Spintronics;437
21.8;12.8 Virtual Substrates;438
21.8.1;12.8.1 Strain adjustment;438
21.8.2;12.8.2 Thin virtual substrates;439
21.9;12.9 Conclusion;440
21.10;References;440
22;Chapter 13 Trends and Outlook;444
22.1;13.1 Introduction;444
22.2;13.2 GOI and Epitaxial Germanium Substrates;445
22.2.1;13.2.1 Ge condensation technique;445
22.2.2;13.2.2 Germanium epitaxial growth on silicon;446
22.3;13.3 Alternative Ge-based Device Concepts;451
22.3.1;13.3.1 GaAs and III–V on germanium FETs;451
22.3.2;13.3.2 Germanium nanowire and QD devices;453
22.4;13.4 Conclusions;454
22.5;References;454
23;Appendix;460
24;Index;468
24.1;A;468
24.2;B;468
24.3;C;469
24.4;D;469
24.5;E;471
24.6;F;471
24.7;G;471
24.8;H;472
24.9;I;472
24.10;J;473
24.11;K;473
24.12;L;473
24.13;M;473
24.14;N;474
24.15;O;474
24.16;P;474
24.17;Q;475
24.18;R;475
24.19;S;475
24.20;T;476
24.21;U;476
24.22;V;476
24.23;W;476
24.24;X;476
24.25;Z;476
25;Color Plates;36