Chung | Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse | E-Book | sack.de
E-Book

E-Book, Deutsch, 346 Seiten, Web PDF

Reihe: Hochschultext

Chung Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse


Erscheinungsjahr 2013
ISBN: 978-3-642-67033-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 346 Seiten, Web PDF

Reihe: Hochschultext

ISBN: 978-3-642-67033-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Aus den Besprechungen: "Unter den zahlreichen Einführungen in die Wahrscheinlichkeitsrechnung bildet dieses Buch eine erfreuliche Ausnahme. Der Stil einer lebendigen Vorlesung ist über Niederschrift und Übersetzung hinweg erhalten geblieben. In jedes Kapitel wird sehr anschaulich eingeführt. Sinn und Nützlichkeit der mathematischen Formulierungen werden den Lesern nahegebracht. Die wichtigsten Zusammenhänge sind als mathematische Sätze klar formuliert." #FREQUENZ#1
Chung Elementare Wahrscheinlichkeitstheorie und stochastische Prozesse jetzt bestellen!

Zielgruppe


Lower undergraduate

Weitere Infos & Material


1 Menge.- 1. 1 Stichprobenmengen.- 1. 2 Rechenoperationen mit Mengen.- 1. 3 Verschiedene Beziehungen.- 1. 4 Indikator.- Aufgaben.- 2 Wahrscheinlichkeit.- 2.1 Beispiele für Wahrscheinlichkeit.- 2. 2 Definition und anschauliche Beispiele.- 2. 3 Folgerungen aus den Axiomen.- 2. 4 Unabhängige Ereignisse.- 2. 5 Arithmetische Dichte.- Aufgaben.- 3 Abzählen.- 3. 1 Die Grundregel.- 3. 2 Verschiedene Arten von Stichproben.- 3. 3 Zuordnungsmodelle; Binomialkoeffizienten.- 3. 4 Lösungsansätze.- Aufgaben.- 4 Zufällige Variable.- 4. 1 Was ist eine zufällige Variable?.- 4. 2 Wie kommen zufällige Variable zustande?.- 4. 3 Verteilung und Erwartungswert.- 4. 4 Ganzzahlige zufällige Variable.- 4. 5 Zufällige Variable mit Dichten.- 4. 6 Der allgemeine Fall.- Aufgaben.- Anhang 1: Borel’sche Mengenkörper und allgemeine zufällige Variabl.- 5 Bedingtheit und Unabhängigkeit.- 5. 1 Beispiele für Bedingtheit.- 5. 2 Grundlegende Formeln.- 5. 3 Sequentielle Stichproben.- 5. 4 Das Polya’sche Urnenschema.- 5. 5 Die Unabhängigkeit und Zusammenhänge.- 5. 6 Genetische Modelle.- Aufgaben.- 6 Erwartungswert, Varianz und Transformationen.- 6. 1 Grundeigenschaften des Erwartungswerts.- 6. 2 Erwartungswert bei gegebener Dichte.- 6. 3 Der Multiplikationssatz; Varianz und Kovarianz.- 6. 4 Multinomialverteilung.- 6. 5 Erzeugende Funktion und Ähnliches.- Aufgaben.- 7 Poisson- und Normalverteilungen.- 7. 1 Modelle für die Poisson-Verteilung.- 7.2 Poisson-Prozeß.- 7. 3 Von der Binomial- zur Normalverteilung.- 7. 4 Normalverteilung.- 7. 5 Zentraler Grenzwertsatz.- 7. 6 Das Gesetz der großen Zahl.- Aufgaben.- Anhang 2: Die Stirling’sehe Formel und der Satz von de Moivre-Laplace.- 8 Von Irrfahrten zu Markow-Ketten.- 8. 1 Aufgaben mit Wanderern oder Spielern.- 8. 2 Grenzübergänge zuanderen Modellen.- 8. 3 Übergangswahrscheinlichkeiten.- 8. 4 Grundstrukturen Markow’scher Ketten.- 8. 5 Weiterentwicklungen.- 8. 6 Stabiler Zustand.- 8. 7 Aufstieg oder Niedergang?.- Aufgaben.- Anhang 3: Martingal.- Allgemeine Literaturhinweise.- Lösungen zu den Übungsaufgaben.- Namen- und Sachverzeichnis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.