Chung | Composite Materials | E-Book | www2.sack.de
E-Book

E-Book, Englisch, 371 Seiten

Reihe: Engineering Materials and Processes

Chung Composite Materials

Science and Applications
2. Auflage 2010
ISBN: 978-1-84882-831-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Science and Applications

E-Book, Englisch, 371 Seiten

Reihe: Engineering Materials and Processes

ISBN: 978-1-84882-831-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



The first edition of 'Composite Materials' introduced a new way of looking at composite materials. This second edition expands the book's scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.

Deborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.

Chung Composite Materials jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;In Celebration of the 20th Anniversary of the Composite Materials Research Laboratory;6
2;Preface to the Second Edition;7
3;Preface to the First Edition;9
4;Contents;11
5;1 Composite Material Structure and Processing;16
5.1;1.1 Introduction;16
5.2;1.2 Composite Material Structure;19
5.2.1;1.2.1 Continuous Fiber Composites;20
5.2.2;1.2.2 Carbon–Carbon Composites;21
5.2.3;1.2.3 Cement-Matrix Composites;22
5.3;1.3 Processing of CompositeMaterials;23
5.3.1;1.3.1 Polymer-Matrix Composites;23
5.3.2;1.3.2 Metal-Matrix Composites;29
5.3.3;1.3.3 Carbon-Matrix Composites;36
5.3.4;1.3.4 Ceramic-Matrix Composites;40
5.3.5;1.3.5 Cement-Matrix Composites;41
5.4;1.4 Composite Design Concepts;42
5.5;1.5 Applications of Composite Materials;45
5.6;Review Questions;47
5.7;References;48
5.8;Further Reading;48
6;2 Carbon Fibers and Nanofillers;50
6.1;2.1 Carbons;50
6.2;2.2 Carbon Fibers;51
6.3;2.3 Nanofillers;55
6.4;Review Questions;60
6.5;Further Reading;61
7;3 Mechanical Properties;62
7.1;3.1 Property Requirements;62
7.2;3.2 Basic Mechanical Properties;64
7.2.1;3.2.1 Modulus of Elasticity;64
7.2.2;3.2.2 Strength;72
7.2.3;3.2.3 Ductility;76
7.3;3.3 Effect of Damage on the Mechanical Properties;76
7.4;3.4 Brittle vs. Ductile Materials;77
7.5;3.5 Strengthening;77
7.6;3.6 Vibration Damping Ability;80
7.6.1;3.6.1 Introduction;80
7.6.2;3.6.2 Viscoelastic Behavior;82
7.6.3;3.6.3 Pseudoplasticity and Ferroelasticity;99
7.6.4;3.6.4 Interfacial Damping;100
7.6.5;3.6.5 Structural Materials for Damping;100
7.6.6;3.6.6 Comparison of Materials Utilized for Damping;102
7.6.7;3.6.7 Emerging Materials for Damping;104
7.7;Example Problems;105
7.8;Review Questions;106
7.9;References;107
7.10;Further Reading;108
8;4 Durability and Degradation of Materials;109
8.1;4.1 Corrosion Resistance;109
8.1.1;4.1.1 Introduction to Electrochemical Behavior;109
8.1.2;4.1.2 Corrosion Protection;118
8.2;4.2 Elevated Temperature Resistance;122
8.2.1;4.2.1 Technological Relevance;122
8.2.2;4.2.2 Effects of Thermal Degradation;123
8.2.3;4.2.3 Origins of Thermal Degradation;124
8.2.4;4.2.4 Effects of Temperature on the Composite Microstructure;127
8.2.5;4.2.5 Improving the Elevated Temperature Resistance;129
8.2.6;4.2.6 Investigation of Elevated Temperature Resistance;131
8.3;4.3 Fatigue Resistance;136
8.3.1;4.3.1 Mechanical Fatigue;136
8.3.2;4.3.2 Thermal Fatigue;139
8.4;4.4 Durability;139
8.5;Review Questions;142
8.6;References;143
8.7;Further Reading;143
9;5 Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair;144
9.1;5.1 Materials for Lightweight Structures;144
9.1.1;5.1.1 Composites with Polymer, Carbon, Ceramic and Metal Matrices;144
9.1.2;5.1.2 Cement-Matrix Composites;145
9.2;5.2 Materials for Civil Infrastructure;146
9.3;5.3 Materials for Joining;149
9.3.1;5.3.1 Sintering or Autohesion;150
9.3.2;5.3.2 Welding;151
9.3.3;5.3.3 Brazing and Soldering;154
9.3.4;5.3.4 Adhesion;157
9.3.5;5.3.5 Cementitious Joining;158
9.3.6;5.3.6 Joining Using Inorganic Binders;159
9.3.7;5.3.7 Joining Using Carbon Binders;162
9.3.8;5.3.8 Fastening;162
9.3.9;5.3.9 Expansion Joints;165
9.4;5.4 Materials Used for Repair;166
9.4.1;5.4.1 Patching;166
9.4.2;5.4.2 Wrapping;166
9.4.3;5.4.3 Self-healing;167
9.5;Review Questions;168
9.6;References;169
9.7;Further Reading;169
10;6 Tailoring Composite Materials;170
10.1;6.1 Tailoring by Component Selection;170
10.1.1;6.1.1 Polymer-Matrix Composites;170
10.1.2;6.1.2 Cement-Matrix Composites;171
10.1.3;6.1.3 Metal-Matrix Composites;175
10.2;6.2 Tailoring by Interface Modification;183
10.2.1;6.2.1 Interface Bond Modification;183
10.2.2;6.2.2 Interface Composition Modification;192
10.2.3;6.2.3 Interface Microstructure Modification;198
10.3;6.3 Tailoring by Surface Modification;198
10.4;6.4 Tailoring by Microstructure Control;204
10.4.1;6.4.1 Crystallinity Control;204
10.4.2;6.4.2 Porosity Control;205
10.5;6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization;207
10.5.1;6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix;207
10.5.2;6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid;210
10.5.3;6.5.3 Nanocomposites Made by Inorganic Component Exfoliationand Subsequent Organic Component Adsorption;211
10.6;Review Questions;212
10.7;References;213
10.8;Further Reading;213
11;7 Electrical Properties;215
11.1;7.1 Origin of Electrical Conduction;215
11.2;7.2 Volume Electrical Resistivity;216
11.3;7.3 Calculating the Volume Electrical Resistivityof a Composite Material;218
11.3.1;7.3.1 Parallel Configuration;218
11.3.2;7.3.2 Series Configuration;220
11.4;7.4 Contact Electrical Resistivity;221
11.5;7.5 Electric Power and Resistance Heating;222
11.5.1;7.5.1 Scientific Basis;222
11.5.2;7.5.2 Self-Heating Structural Materials;224
11.6;7.6 Effect of Temperature on the Electrical Resistivity;231
11.6.1;7.6.1 Scientific Basis;231
11.6.2;7.6.2 Structural Materials Used as Thermistors;233
11.7;7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity);237
11.7.1;7.7.1 Scientific Basis;237
11.7.2;7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites;238
11.8;7.8 Seebeck Effect;245
11.8.1;7.8.1 Scientific Basis;245
11.8.2;7.8.2 Thermoelectric Composites;251
11.9;7.9 Applications of Conductive Materials;256
11.9.1;7.9.1 Overview of Applications;256
11.9.2;7.9.2 Microelectronic Applications;258
11.9.3;7.9.3 Electrochemical Applications;259
11.10;7.10 Conductive Phase Distribution and Connectivity;260
11.10.1;7.10.1 Effect of the Conductive Filler Aspect Ratio;260
11.10.2;7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity;261
11.10.3;7.10.3 Effect of Conductive Particle Size;263
11.10.4;7.10.4 Effect of Additives;264
11.10.5;7.10.5 Levels of Percolation;268
11.11;7.11 Electrically Conductive Joints;268
11.11.1;7.11.1 Mechanically Strong Joints for Electrical Conduction;269
11.11.2;7.11.2 Mechanically Weak Joints for Electrical Conduction;276
11.11.3;7.11.3 Electrical Connection Through Pressure Application;279
11.11.4;7.11.4 Electrical Connection Through a Z-Axis Electrical Conductor;280
11.12;7.12 Porous Conductors;281
11.12.1;7.12.1 Porous Conductors Without a Nonconductive Filler;282
11.12.2;7.12.2 Porous Conductors With a Nonconductive Fillerand a Conductive Additive;283
11.13;Review Questions;284
11.14;References;285
11.15;Further Reading;286
12;8 Thermal Properties;288
12.1;8.1 Thermal Expansion;288
12.2;8.2 Specific Heat;293
12.3;8.3 Phase Transformations;295
12.3.1;8.3.1 Scientific Basis;295
12.3.2;8.3.2 Shape Memory Effect;298
12.3.3;8.3.3 Calorimetry;304
12.4;8.4 Thermal Conductivity;304
12.5;8.5 Thermal Conductance of an Interface;309
12.6;8.6 Evaluating the Thermal Conduction;310
12.6.1;8.6.1 Guarded Hot Plate Method;310
12.6.2;8.6.2 Laser FlashMethod;313
12.7;8.7 Thermal Interface Materials;315
12.8;8.8 Composites Used for Microelectronic Heat Sinks;323
12.8.1;8.8.1 Metals, Diamond, and Ceramics;324
12.8.2;8.8.2 Metal-Matrix Composites;325
12.8.3;8.8.3 Carbon-Matrix Composites;328
12.8.4;8.8.4 Carbon and Graphite;329
12.8.5;8.8.5 Ceramic-Matrix Composites;330
12.8.6;8.8.6 Polymer-Matrix Composites;330
12.9;8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation;331
12.9.1;8.9.1 Interlaminar Interface Nanostructuring;332
12.9.2;8.9.2 Through-Thickness Thermal Conductivity;333
12.9.3;8.9.3 Through-Thickness Compressive Properties;334
12.9.4;8.9.4 Flexural Properties;335
12.10;8.10 Composites Used for Thermal Insulation;337
12.11;Example Problems;339
12.12;Review Questions;341
12.13;References;341
12.14;Further Reading;341
13;Appendix: Test;343
13.1;Test Questions;343
13.1.1;Part I (32%);343
13.1.2;Part II (68%);347
13.2;Test Solutions;349
13.2.1;Part I (32%);349
13.2.2;Part II (68%);349
14;Index;352



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.