E-Book, Englisch, 371 Seiten
Chung Composite Materials
2. Auflage 2010
ISBN: 978-1-84882-831-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Science and Applications
E-Book, Englisch, 371 Seiten
Reihe: Engineering Materials and Processes
ISBN: 978-1-84882-831-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The first edition of 'Composite Materials' introduced a new way of looking at composite materials. This second edition expands the book's scope to emphasize application-driven and process-oriented materials development. The approach is vibrant yet functional.
Deborah D.L. Chung is Professor in the Department of Mechanical and Aerospace Engineering at the University of Buffalo, USA. She has a PhD in Materials Science from the Massachusetts Institute of Technology, USA.
Autoren/Hrsg.
Weitere Infos & Material
1;In Celebration of the 20th Anniversary of the Composite Materials Research Laboratory;6
2;Preface to the Second Edition;7
3;Preface to the First Edition;9
4;Contents;11
5;1 Composite Material Structure and Processing;16
5.1;1.1 Introduction;16
5.2;1.2 Composite Material Structure;19
5.2.1;1.2.1 Continuous Fiber Composites;20
5.2.2;1.2.2 Carbon–Carbon Composites;21
5.2.3;1.2.3 Cement-Matrix Composites;22
5.3;1.3 Processing of CompositeMaterials;23
5.3.1;1.3.1 Polymer-Matrix Composites;23
5.3.2;1.3.2 Metal-Matrix Composites;29
5.3.3;1.3.3 Carbon-Matrix Composites;36
5.3.4;1.3.4 Ceramic-Matrix Composites;40
5.3.5;1.3.5 Cement-Matrix Composites;41
5.4;1.4 Composite Design Concepts;42
5.5;1.5 Applications of Composite Materials;45
5.6;Review Questions;47
5.7;References;48
5.8;Further Reading;48
6;2 Carbon Fibers and Nanofillers;50
6.1;2.1 Carbons;50
6.2;2.2 Carbon Fibers;51
6.3;2.3 Nanofillers;55
6.4;Review Questions;60
6.5;Further Reading;61
7;3 Mechanical Properties;62
7.1;3.1 Property Requirements;62
7.2;3.2 Basic Mechanical Properties;64
7.2.1;3.2.1 Modulus of Elasticity;64
7.2.2;3.2.2 Strength;72
7.2.3;3.2.3 Ductility;76
7.3;3.3 Effect of Damage on the Mechanical Properties;76
7.4;3.4 Brittle vs. Ductile Materials;77
7.5;3.5 Strengthening;77
7.6;3.6 Vibration Damping Ability;80
7.6.1;3.6.1 Introduction;80
7.6.2;3.6.2 Viscoelastic Behavior;82
7.6.3;3.6.3 Pseudoplasticity and Ferroelasticity;99
7.6.4;3.6.4 Interfacial Damping;100
7.6.5;3.6.5 Structural Materials for Damping;100
7.6.6;3.6.6 Comparison of Materials Utilized for Damping;102
7.6.7;3.6.7 Emerging Materials for Damping;104
7.7;Example Problems;105
7.8;Review Questions;106
7.9;References;107
7.10;Further Reading;108
8;4 Durability and Degradation of Materials;109
8.1;4.1 Corrosion Resistance;109
8.1.1;4.1.1 Introduction to Electrochemical Behavior;109
8.1.2;4.1.2 Corrosion Protection;118
8.2;4.2 Elevated Temperature Resistance;122
8.2.1;4.2.1 Technological Relevance;122
8.2.2;4.2.2 Effects of Thermal Degradation;123
8.2.3;4.2.3 Origins of Thermal Degradation;124
8.2.4;4.2.4 Effects of Temperature on the Composite Microstructure;127
8.2.5;4.2.5 Improving the Elevated Temperature Resistance;129
8.2.6;4.2.6 Investigation of Elevated Temperature Resistance;131
8.3;4.3 Fatigue Resistance;136
8.3.1;4.3.1 Mechanical Fatigue;136
8.3.2;4.3.2 Thermal Fatigue;139
8.4;4.4 Durability;139
8.5;Review Questions;142
8.6;References;143
8.7;Further Reading;143
9;5 Materials for Lightweight Structures, Civil Infrastructure, Joining and Repair;144
9.1;5.1 Materials for Lightweight Structures;144
9.1.1;5.1.1 Composites with Polymer, Carbon, Ceramic and Metal Matrices;144
9.1.2;5.1.2 Cement-Matrix Composites;145
9.2;5.2 Materials for Civil Infrastructure;146
9.3;5.3 Materials for Joining;149
9.3.1;5.3.1 Sintering or Autohesion;150
9.3.2;5.3.2 Welding;151
9.3.3;5.3.3 Brazing and Soldering;154
9.3.4;5.3.4 Adhesion;157
9.3.5;5.3.5 Cementitious Joining;158
9.3.6;5.3.6 Joining Using Inorganic Binders;159
9.3.7;5.3.7 Joining Using Carbon Binders;162
9.3.8;5.3.8 Fastening;162
9.3.9;5.3.9 Expansion Joints;165
9.4;5.4 Materials Used for Repair;166
9.4.1;5.4.1 Patching;166
9.4.2;5.4.2 Wrapping;166
9.4.3;5.4.3 Self-healing;167
9.5;Review Questions;168
9.6;References;169
9.7;Further Reading;169
10;6 Tailoring Composite Materials;170
10.1;6.1 Tailoring by Component Selection;170
10.1.1;6.1.1 Polymer-Matrix Composites;170
10.1.2;6.1.2 Cement-Matrix Composites;171
10.1.3;6.1.3 Metal-Matrix Composites;175
10.2;6.2 Tailoring by Interface Modification;183
10.2.1;6.2.1 Interface Bond Modification;183
10.2.2;6.2.2 Interface Composition Modification;192
10.2.3;6.2.3 Interface Microstructure Modification;198
10.3;6.3 Tailoring by Surface Modification;198
10.4;6.4 Tailoring by Microstructure Control;204
10.4.1;6.4.1 Crystallinity Control;204
10.4.2;6.4.2 Porosity Control;205
10.5;6.5 Tailoring by Organic–Inorganic Nanoscale Hybridization;207
10.5.1;6.5.1 Nanocomposites with Organic Solid Nanoparticles Dispersed in an Inorganic Matrix;207
10.5.2;6.5.2 Nanocomposites with an Organic Component Dispersed in an Inorganic Matrix Where the Organic Component is Added as a Liquid;210
10.5.3;6.5.3 Nanocomposites Made by Inorganic Component Exfoliationand Subsequent Organic Component Adsorption;211
10.6;Review Questions;212
10.7;References;213
10.8;Further Reading;213
11;7 Electrical Properties;215
11.1;7.1 Origin of Electrical Conduction;215
11.2;7.2 Volume Electrical Resistivity;216
11.3;7.3 Calculating the Volume Electrical Resistivityof a Composite Material;218
11.3.1;7.3.1 Parallel Configuration;218
11.3.2;7.3.2 Series Configuration;220
11.4;7.4 Contact Electrical Resistivity;221
11.5;7.5 Electric Power and Resistance Heating;222
11.5.1;7.5.1 Scientific Basis;222
11.5.2;7.5.2 Self-Heating Structural Materials;224
11.6;7.6 Effect of Temperature on the Electrical Resistivity;231
11.6.1;7.6.1 Scientific Basis;231
11.6.2;7.6.2 Structural Materials Used as Thermistors;233
11.7;7.7 Effect of Strain on the Electrical Resistivity (Piezoresistivity);237
11.7.1;7.7.1 Scientific Basis;237
11.7.2;7.7.2 Effects of Strain and Strain-Induced Damage on the Electrical Resistivity of Polymer-Matrix Structural Composites;238
11.8;7.8 Seebeck Effect;245
11.8.1;7.8.1 Scientific Basis;245
11.8.2;7.8.2 Thermoelectric Composites;251
11.9;7.9 Applications of Conductive Materials;256
11.9.1;7.9.1 Overview of Applications;256
11.9.2;7.9.2 Microelectronic Applications;258
11.9.3;7.9.3 Electrochemical Applications;259
11.10;7.10 Conductive Phase Distribution and Connectivity;260
11.10.1;7.10.1 Effect of the Conductive Filler Aspect Ratio;260
11.10.2;7.10.2 Effect of the Nonconductive Thermoplastic Particle Viscosity;261
11.10.3;7.10.3 Effect of Conductive Particle Size;263
11.10.4;7.10.4 Effect of Additives;264
11.10.5;7.10.5 Levels of Percolation;268
11.11;7.11 Electrically Conductive Joints;268
11.11.1;7.11.1 Mechanically Strong Joints for Electrical Conduction;269
11.11.2;7.11.2 Mechanically Weak Joints for Electrical Conduction;276
11.11.3;7.11.3 Electrical Connection Through Pressure Application;279
11.11.4;7.11.4 Electrical Connection Through a Z-Axis Electrical Conductor;280
11.12;7.12 Porous Conductors;281
11.12.1;7.12.1 Porous Conductors Without a Nonconductive Filler;282
11.12.2;7.12.2 Porous Conductors With a Nonconductive Fillerand a Conductive Additive;283
11.13;Review Questions;284
11.14;References;285
11.15;Further Reading;286
12;8 Thermal Properties;288
12.1;8.1 Thermal Expansion;288
12.2;8.2 Specific Heat;293
12.3;8.3 Phase Transformations;295
12.3.1;8.3.1 Scientific Basis;295
12.3.2;8.3.2 Shape Memory Effect;298
12.3.3;8.3.3 Calorimetry;304
12.4;8.4 Thermal Conductivity;304
12.5;8.5 Thermal Conductance of an Interface;309
12.6;8.6 Evaluating the Thermal Conduction;310
12.6.1;8.6.1 Guarded Hot Plate Method;310
12.6.2;8.6.2 Laser FlashMethod;313
12.7;8.7 Thermal Interface Materials;315
12.8;8.8 Composites Used for Microelectronic Heat Sinks;323
12.8.1;8.8.1 Metals, Diamond, and Ceramics;324
12.8.2;8.8.2 Metal-Matrix Composites;325
12.8.3;8.8.3 Carbon-Matrix Composites;328
12.8.4;8.8.4 Carbon and Graphite;329
12.8.5;8.8.5 Ceramic-Matrix Composites;330
12.8.6;8.8.6 Polymer-Matrix Composites;330
12.9;8.9 Carbon Fiber Polymer-Matrix Composites for Aircraft Heat Dissipation;331
12.9.1;8.9.1 Interlaminar Interface Nanostructuring;332
12.9.2;8.9.2 Through-Thickness Thermal Conductivity;333
12.9.3;8.9.3 Through-Thickness Compressive Properties;334
12.9.4;8.9.4 Flexural Properties;335
12.10;8.10 Composites Used for Thermal Insulation;337
12.11;Example Problems;339
12.12;Review Questions;341
12.13;References;341
12.14;Further Reading;341
13;Appendix: Test;343
13.1;Test Questions;343
13.1.1;Part I (32%);343
13.1.2;Part II (68%);347
13.2;Test Solutions;349
13.2.1;Part I (32%);349
13.2.2;Part II (68%);349
14;Index;352




