Buch, Englisch, Band 359, 196 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g
Buch, Englisch, Band 359, 196 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 353 g
Reihe: Lecture Notes in Control and Information Sciences
ISBN: 978-3-540-72700-2
Verlag: Springer Berlin Heidelberg
performance index. This book focuses on the efficient and systematic computation of closed-form optimal controllers for the powerful class of fast-sampled constrained piecewise affine systems. These systems may exhibit rather complex behavior and are equivalent to many other hybrid system formalisms (combining continuous-valued dynamics with logic rules) reported in the literature. Furthermore, piecewise affine
systems are a useful modeling tool that can capture general nonlinearities (e.g. by local approximation), constraints, saturations, switches, and other hybrid modeling phenomena. The first part of the book presents an introduction to the mathematical and control theoretical background material needed for the full understanding of the book. The second part provides an in depth look at the computational and control theoretic properties of the
controllers and part three presents different analysis and post-processing techniques.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Elektronik | Nachrichtentechnik Elektronik Überwachungstechnik
- Technische Wissenschaften Technik Allgemein Mess- und Automatisierungstechnik
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematische Analysis Variationsrechnung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
Weitere Infos & Material
Background.- Mathematical Necessities.- Systems and Control Theory.- Receding Horizon Control.- Piecewise Affine Systems.- Optimal Control of Constrained Piecewise Affine Systems.- Constrained Finite Time Optimal Control.- Constrained Infinite Time Optimal Control.- Analysis and Post-Processing Techniques for Piecewise Affine Systems.- Linear Vector Norms as Lyapunov Functions.- Stability Analysis.- Stability Tubes.- Efficient Evaluation of Piecewise Control Laws Defined Over a Large Number of Polyhedra.