Christodorescu / Jha / Maughan | Malware Detection | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 27, 312 Seiten

Reihe: Advances in Information Security

Christodorescu / Jha / Maughan Malware Detection


1. Auflage 2007
ISBN: 978-0-387-44599-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 27, 312 Seiten

Reihe: Advances in Information Security

ISBN: 978-0-387-44599-1
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book captures the state of the art research in the area of malicious code detection, prevention and mitigation. It contains cutting-edge behavior-based techniques to analyze and detect obfuscated malware. The book analyzes current trends in malware activity online, including botnets and malicious code for profit, and it proposes effective models for detection and prevention of attacks using. Furthermore, the book introduces novel techniques for creating services that protect their own integrity and safety, plus the data they manage.

Christodorescu / Jha / Maughan Malware Detection jetzt bestellen!

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Introduction;10
4;Part I Overview;13
4.1;1 Malware Evolution: A Snapshot of Threats and Countermeasures in 2005;13
4.1.1;1.1 Overview;15
4.1.2;1.2 Evolution of Threats;15
4.1.3;1.3 Evolution of Countermeasures;17
4.1.4;1.4 Summary;23
4.1.5;References;23
5;Part II Software Analysis and Assurance;29
5.1;2 Static Disassembly and Code Analysis;31
5.1.1;2.1 Introduction;31
5.1.2;2.2 Robust Disassembly of Obfuscated Binaries;32
5.1.3;2.3 Code Analysis;46
5.1.4;2.4 Conclusions;52
5.1.5;References;53
5.2;3 A Next- Generation Platform for Analyzing Executables*;55
5.2.1;3.1 Introduction;56
5.2.2;3.2 Advantages of Analyzing Executables;57
5.2.3;3.3 Analyzing Executables in the Absence of Source Code;60
5.2.4;3.4 Model-Checking Facilities;69
5.2.5;3.5 Related Work;71
5.2.6;References;71
5.3;4 Behavioral and Structural Properties of Malicious Code;75
5.3.1;4.1 Introduction;75
5.3.2;4.2 Behavioral Identification of Rootliits;76
5.3.3;4.3 Structural Identification of Worms;83
5.3.4;4.4 Conclusions;94
5.3.5;References;94
5.4;5 Detection and Prevention of SQL Injection Attacks;97
5.4.1;5.1 Introduction;97
5.4.2;5.2 SQL Injection Attacks Explained;99
5.4.3;5.3 Detection and Prevention of SQL Injection Attacks;106
5.4.4;5.4 Empirical Evaluation;112
5.4.5;5.5 Related Approaches;117
5.4.6;5.6 Conclusion;119
5.4.7;Acknowledgments;120
5.4.8;References;120
6;Part III Distributed Threat Detection and Defense;123
6.1;6 Very Fast Containment of Scanning Worms, Revisited*;125
6.1.1;6.1 Introduction;125
6.1.2;6.2 Worm Containment;127
6.1.3;6.3 Scan Suppression;129
6.1.4;6.4 Hardware Implementations;130
6.1.5;6.5 Approximate Scan Suppression;133
6.1.6;6.6 Cooperation;142
6.1.7;6.7 Attacking Worm Containment;145
6.1.8;6.8 Related Work;149
6.1.9;6.9 Future Work;150
6.1.10;6.10 Conclusions;151
6.1.11;6.11 Revisited;151
6.1.12;6.12 Acknowledgments;156
6.1.13;References;156
6.2;7 Sting: An End- to- End Self-Healing System for Defending against Internet Worms;159
6.2.1;7.1 Introduction;159
6.2.2;7.2 Worm Defense Design Space;161
6.2.3;7.3 Dynamic Taint Analysis for Automatic Detection of New Exploits;162
6.2.4;7.4 Automatic Generation of Input-based Filters;165
6.2.5;7.5 Automatic Generation of Vulnerability-Specific Execution Filters;171
6.2.6;7.6 Sting Self-healing Architecture and Experience;172
6.2.7;7.7 Evaluation;174
6.2.8;7.8 Related Work;177
6.2.9;7.9 Conclusion;178
6.2.10;References;179
6.3;8 An Inside Look at Botnets;183
6.3.1;8.1 Introduction;183
6.3.2;8.2 Related Work;186
6.3.3;8.3 Evaluation;186
6.3.4;8.4 Conclusions;200
6.3.5;Acknowledgements;201
6.3.6;References;201
6.4;9 Can Cooperative Intrusion Detectors Challenge the Base- Rate Fallacy?;205
6.4.1;9.1 Introduction;205
6.4.2;9.2 Overview;206
6.4.3;9.3 The Problem of Detector Combination;209
6.4.4;9.4 Possible Solutions to the Detector-Combination Problem;210
6.4.5;9.5 Recommendations to IDS Developers;214
6.4.6;9.6 Related Work;218
6.4.7;9.7 Future Vision;220
6.4.8;References;220
7;Part IV Stealthy and Targeted Threat Detection and Defense;223
7.1;10 Composite Hybrid Techniques For Defending Against Targeted Attacks;225
7.1.1;10.1 Introduction;225
7.1.2;10.2 Architecture;227
7.1.3;10.3 Limitations;233
7.1.4;10.4 Related Work;233
7.1.5;10.5 Conclusion;237
7.1.6;References;237
7.2;11 Towards Stealthy Malware Detection;243
7.2.1;Abstract;243
7.2.2;11.1 Introduction;244
7.2.3;11.2 Deceiving anti-virus software;246
7.2.4;11.3 N-gram experiments on files;249
7.2.5;11.4 Concluding Remarks;259
7.2.6;References;260
8;Part V Novel Techniques for Constructing Trustworthy Services;263
8.1;12 Pioneer: Verifying Code Integrity and Enforcing Untampered Code Execution on Legacy Systems*;265
8.1.1;12.1 Introduction;265
8.1.2;12.2 Problem Definition, Assumptions & Attacker Model;267
8.1.3;12.3 Pioneer Overview;269
8.1.4;12.4 Design of the Checksum Code;271
8.1.5;12.5 Checksum Code Implementation on the Netburst Microarchitecture;278
8.1.6;12.6 Applications;293
8.1.7;12.7 Related Work;297
8.1.8;12.8 Conclusions and Future Work;299
8.1.9;12.9 Acknowledgments;300
8.1.10;References;300
8.2;13 Principles of Secure Information Flow Analysis;303
8.2.1;13.1 Basic Principles;304
8.2.2;13.2 Typing Principles;306
8.2.3;13.3 Challenges;315
8.2.4;13.4 Conclusion;317
8.2.5;References;317
9;Index;321


1.3.1 Countermeasures for Previously Unseen Threats (p. 6)
Countermeasures for previously unseen threats are addressed below first for detecting previously unseen threats against already known vulnerabilities and identifying previously unknown vulnerabilities, and then for detecting previously unseen threats without foreknowledge of the vulnerability.

Blocking Previously Unseen Threats Against Already Known Vulnerabilities
Techniques such as Generic Exploit Blocking (GEB) [33] and Microsoft's Shield effort [47] were conceived to provide protection against previously unseen threats. These techniques use analysis of a known vulnerability to produce a signature that is not specific to any single instance of malware exploiting the vulnerability.

Thus, such a properly written signature can properly detect all potential attacks against a given vulnerability. This is in contrast with traditional antivirus and IDS heuristics which may be able to detect a percentage of new threats, but cannot guarantee complete detection. However, these approaches include a number of challenges in implementation, including the following three challenges.

- First, the signatures must be specified in a language and processed by a scanning engine that facilitate "performanf' scanning, either in the sense of high line-speeds, as is the constraint for traditional intrusion detection and network level anti-virus systems, or in the sense of low CPU burden.

- Second, the system must maintain low false positives while producing high true positives.

- Third, even though these approaches do not require prior knowledge of the malware, they still require prior knowledge of the vulnerability. The luxury of that prior knowledge is not always available. The next two sections describe techniques for identifying previously unknown vulnerabilities, and techniques for detecting previously unseen threats without the luxury of knowledge of the vulnerability.

Identifying Previously Unknown Vulnerabilities

Given that the above techniques rely on prior knowledge of vulnerabilities, they would be substantially more valuable if it was possible to better identify vulnerabilities in software before malware was created to exploit those vulnerabilities. A form of random test case generation known as Fuzzing [5] is among the most common techniques for finding vulnerabilities.

More recently, static analysis of the target software itself has been used to intelligently generate test cases more efficiently identifying vulnerabilities likely to exist near comer cases in target software execution [16, 23]. Although these techniques currently require source code, substantial progress has been made in extracting models from executable code for model checking and other static analysis without source code [13, 14]. However, in discussing static analysis of binaries, it is important to note that such tools can be used very effectively by creators of malware just as easily as they can be used by the security community [30].

Identifying Previously Unseen Threats without Prior Knowledge of Vulnerabilities

In this section we describe several emerging techniques that do not require prior knowledge of vulnerabilities for identifying previously unseen threats. These techniques include behavior based techniques, honeypots, anomaly detection, fault analysis, and correlation. Dynamic analysis of program behavior within a host is not new [11]. Behavior analysis was extended with various forms of anomaly detection [25] to improve generalization to previously unseen attacks while reducing false positives.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.