Christensen | Approximation Theory | Buch | 978-0-8176-3600-5 | sack.de

Buch, Englisch, 156 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 307 g

Reihe: Applied and Numerical Harmonic Analysis

Christensen

Approximation Theory

From Taylor Polynomials to Wavelets
6th 2004., Corr. 2. Printing 2005, Corr. 3rd Printing 2006 Auflage
ISBN: 978-0-8176-3600-5
Verlag: Birkhauser Boston

From Taylor Polynomials to Wavelets

Buch, Englisch, 156 Seiten, Format (B × H): 156 mm x 235 mm, Gewicht: 307 g

Reihe: Applied and Numerical Harmonic Analysis

ISBN: 978-0-8176-3600-5
Verlag: Birkhauser Boston


This concisely written book gives an elementary introduction to a classical area of mathematics—approximation theory—in a way that naturally leads to the modern field of wavelets.  The exposition, driven by ideas rather than technical details and proofs, demonstrates the dynamic nature of mathematics and the influence of classical disciplines on many areas of modern mathematics and applications.  Included are classical, illustrative examples and constructions, exercises, and a discussion of the role of wavelets to areas such as digital signal processing and data compression.

One of the few books to describe wavelets in words rather than mathematical symbols, the work will be an excellent textbook or self-study reference for advanced undergraduate/beginning graduate students and instructors in pure and applied mathematics, mathematical physics, and engineering.  Readers will find motivation and background material pointing toward advanced literature and research topics in pure and applied harmonic analysis and related areas.

Christensen Approximation Theory jetzt bestellen!

Zielgruppe


Graduate

Weitere Infos & Material


1 Approximation with Polynomials.- 1.1 Approximation of a function on an interval.- 1.2 Weierstrass’ theorem.- 1.3 Taylor’s theorem.- 1.4 Exercises.- 2 Infinite Series.- 2.1 Infinite series of numbers.- 2.2 Estimating the sum of an infinite series.- 2.3 Geometric series.- 2.4 Power series.- 2.5 General infinite sums of functions.- 2.6 Uniform convergence.- 2.7 Signal transmission.- 2.8 Exercises.- 3 Fourier Analysis.- 3.1 Fourier series.- 3.2 Fourier’s theorem and approximation.- 3.3 Fourier series and signal analysis.- 3.4 Fourier series and Hilbert spaces.- 3.5 Fourier series in complex form.- 3.6 Parseval’s theorem.- 3.7 Regularity and decay of the Fourier coefficients.- 3.8 Best N-term approximation.- 3.9 The Fourier transform.- 3.10 Exercises.- 4 Wavelets and Applications.- 4.1 About wavelet systems.- 4.2 Wavelets and signal processing.- 4.3 Wavelets and fingerprints.- 4.4 Wavelet packets.- 4.5 Alternatives to wavelets: Gabor systems.- 4.6 Exercises.- 5 Wavelets and their Mathematical Properties.- 5.1 Wavelets and L2 (?).- 5.2 Multiresolution analysis.- 5.3 The role of the Fourier transform.- 5.4 The Haar wavelet.- 5.5 The role of compact support.- 5.6 Wavelets and singularities.- 5.7 Best N-term approximation.- 5.8 Frames.- 5.9 Gabor systems.- 5.10 Exercises.- Appendix A.- A.1 Definitions and notation.- A.2 Proof of Weierstrass’ theorem.- A.3 Proof of Taylor’s theorem.- A.4 Infinite series.- A.5 Proof of Theorem 3 7 2.- Appendix B.- B.1 Power series.- B.2 Fourier series for 2?-periodic functions.- List of Symbols.- References.


Ole Christensen is the author of (0-8176-4295-1).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.