Buch, Englisch, 608 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 943 g
Reihe: Springer Texts in Statistics
Statistical Learning and Dependent Data
Buch, Englisch, 608 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 943 g
Reihe: Springer Texts in Statistics
ISBN: 978-3-030-29166-2
Verlag: Springer International Publishing
This new edition features a wealth of new and revised content. In Statistical Learning it delves into nonparametric regression, penalized estimation (regularization), reproducing kernel Hilbert spaces, the kernel trick, and support vector machines. For Dependent Data it uses linear model theory to examine general linear models, linear mixed models, time series, spatial data, (generalized) multivariate linear models, discrimination, and dimension reduction. While numerous references to are made throughout the volume, can be used on its own given a solid background in linear models. Accompanying R code for the analyses is available online.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
1. Nonparametric Regression.- 2. Penalized Estimation.- 3. Reproducing Kernel Hilbert Spaces.- 4. Covariance Parameter Estimation.- 5. Mixed Models and Variance Components.- 6. Frequency Analysis of Time Series.- 7. Time Domain Analysis.- 8. Linear Models for Spacial Data: Kriging.- 9. Multivariate Linear Models: General. 10. Multivariate Linear Models: Applications.- 11. Generalized Multivariate Linear Models and Longitudinal Data.- 12. Discrimination and Allocation.- 13. Binary Discrimination and Regression.- 14. Principal Components, Classical Multidimensional Scaling, and Factor Analysis.- A Mathematical Background.- B Best Linear Predictors.- C Residual Maximum Likelihood.- Index.- Author Index.