Chow / Sanchez-Gasca | Power System Modeling, Computation, and Control | Buch | 978-1-119-54687-0 | www2.sack.de

Buch, Englisch, 608 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1309 g

Chow / Sanchez-Gasca

Power System Modeling, Computation, and Control


1. Auflage 2020
ISBN: 978-1-119-54687-0
Verlag: Wiley

Buch, Englisch, 608 Seiten, Format (B × H): 175 mm x 250 mm, Gewicht: 1309 g

ISBN: 978-1-119-54687-0
Verlag: Wiley


Provides students with an understanding of the modeling and practice in power system stability analysis and control design, as well as the computational tools used by commercial vendors

Bringing together wind, FACTS, HVDC, and several other modern elements, this book gives readers everything they need to know about power systems. It makes learning complex power system concepts, models, and dynamics simpler and more efficient while providing modern viewpoints of power system analysis.

Power System Modeling, Computation, and Control provides students with a new and detailed analysis of voltage stability; a simple example illustrating the BCU method of transient stability analysis; and one of only a few derivations of the transient synchronous machine model. It offers a discussion on reactive power consumption of induction motors during start-up to illustrate the low-voltage phenomenon observed in urban load centers. Damping controller designs using power system stabilizer, HVDC systems, static var compensator, and thyristor-controlled series compensation are also examined. In addition, there are chapters covering flexible AC transmission Systems (FACTS)—including both thyristor and voltage-sourced converter technology—and wind turbine generation and modeling.
- Simplifies the learning of complex power system concepts, models, and dynamics
- Provides chapters on power flow solution, voltage stability, simulation methods, transient stability, small signal stability, synchronous machine models (steady-state and dynamic models), excitation systems, and power system stabilizer design
- Includes advanced analysis of voltage stability, voltage recovery during motor starts, FACTS and their operation, damping control design using various control equipment, wind turbine models, and control
- Contains numerous examples, tables, figures of block diagrams, MATLAB plots, and problems involving real systems
- Written by experienced educators whose previous books and papers are used extensively by the international scientific community

Power System Modeling, Computation, and Control is an ideal textbook for graduate students of the subject, as well as for power system engineers and control design professionals.

Chow / Sanchez-Gasca Power System Modeling, Computation, and Control jetzt bestellen!

Weitere Infos & Material


Preface xvii

About the Companion Website xxi

1 Introduction 1

1.1 Electrification 1

1.2 Generation, Transmission, and Distribution Systems 2

1.2.1 Central Generating Station Model 2

1.2.2 Renewable Generation 4

1.2.3 Smart Grids 5

1.3 Time Scales 5

1.3.1 Dynamic Phenomena 5

1.3.2 Measurements and Data 5

1.3.3 Control Functions and System Operation 7

1.4 Organization of the Book 7

Part I System Concepts 9

2 Steady-State Power Flow 11

2.1 Introduction 11

2.2 Power Network Elements and Admittance Matrix 12

2.2.1 Transmission Lines 12

2.2.2 Transformers 13

2.2.3 Per Unit Representation 14

2.2.4 Building the Network Admittance Matrix 14

2.3 Active and Reactive Power Flow Calculations 16

2.4 Power Flow Formulation 19

2.5 Newton-Raphson Method 21

2.5.1 General Procedure 21

2.5.2 NR Solution of Power Flow Equations 22

2.6 Advanced Power Flow Features 27

2.6.1 Load Bus Voltage Regulation 27

2.6.2 Multi-area Power Flow 28

2.6.3 Active Line Power Flow Regulation 29

2.6.4 Dishonest Newton-Raphson Method 30

2.6.5 Fast Decoupled Loadflow 30

2.6.6 DC Power Flow 31

2.7 Summary and Notes 31

Appendix 2.A Two-winding Transformer Model 32

Appendix 2.B LU Decomposition and Sparsity Methods 36

Appendix 2.C Power Flow and Dynamic Data for the 2-area, 4-machine System 39

Problems 42

3 Steady-State Voltage Stability Analysis 47

3.1 Introduction 47

3.2 Voltage Collapse Incidents 48

3.2.1 Tokyo, Japan: July 23, 1987 48

3.2.2 US Western Power System: July 2, 1996 48

3.3 Reactive Power Consumption on Transmission Lines 49

3.4 Voltage Stability Analysis of a Radial Load System 55

3.4.1 Maximum Power Transfer 59

3.5 Voltage Stability Analysis of Large Power Systems 61

3.6 Continuation Power Flow Method 64

3.6.1 Continuation Power Flow Algorithm 66

3.7 An AQ-Bus Method for Solving Power Flow 67

3.7.1 Analytical Framework for the AQ-Bus Method 69

3.7.2 AQ-Bus Formulation for Constant-Power-Factor Loads 70

3.7.3 AQ-Bus Algorithm for Computing Voltage Stability Margins 71

3.8 Power System Components Affecting Voltage Stability 73

3.8.1 Shunt Reactive Power Supply 74

3.8.2 Under-Load Tap Changer 76

3.9 Hierarchical Voltage Control 79

3.10 Voltage Stability Margins and Indices 80

3.10.1 Voltage Stability Margins 80

3.10.2 Voltage Sensitivities 81

3.10.3 Singular Values and Eigenvalues of the Power Flow Jacobian Matrix 82

3.11 Summary and Notes 82

Problems 83

4 Power System Dynamics and Simulation 87

4.1 Introduction 87

4.2 Electromechanical Model of Synchronous Machines 88

4.3 Single-Machine Infinite-Bus System 90

4.4 Power System Disturbances 94

4.4.1 Fault-On Analysis 94

4.4.2 Post-Fault Analysis 96

4.4.3 Other Types of Faults 98

4.5 Simulation Methods 98

4.5.1 Modified Euler Methods 99

4.5.1.1 Euler Full-Step Modification Method 100

4.5.1.2 Euler Half-Step Modification Method 101

4.5.2 Adams-Bashforth Second-Order Method 101

4.5.3 Selecting Integration Stepsize 102

4.5.4 Implicit Integration Methods 104

4.5.4.1 Integration of DAEs 105

4.6 Dynamic Models of Multi-Machine Power Systems 106

4.6.1 Constant-Impedance Loads 107

4.6.2 Generator Current Injections 108

4.6.3 Network Equation Extended to the Machine Internal Node 108

4.6.4 Reduced Admittance Matrix Approach 109

4.6.5 Method for Dynamic Simulation 109

4.7 Multi-Machine Power System Stability 114

4.7.1 Reference Frames for Machine Angles 115

4.8 Power System Toolbox 117

4.9 Summary and Notes 119

Problems 119

5 Direct Transient Stability Analysis 123

5.1 Introduction 123

5.2 Equal-Area Analysis of a Single-Machine Infinite-Bus System 124

5.2.1 Power-Angle Curve 124

5.2.2 Fault-On and Post-Fault Analysis 126

5.3 Transient Energy Functions 127

5.3.1 Lyapunov Functions 128

5.3.2 Energy Function for Single-Machine Infinite-Bus Electromechanical Model 128

5.4 Energy Function Analysis of a Disturbance Event 131

5.5 Single-Machine Infinite-Bus Model Phase Portrait and Region of Stability 135

5.6 Direct Stability Analysis using Energy Functions 138

5.7 Energy Functions for Multi-Machine Power Systems 139

5.7.1 Direct Stability Analysis for Multi-Machine Systems 142

5.7.2 Computation of Critical Energy 143

5.8 Dynamic Security Assessment 146

5.9 Summary and Notes 146

Problems 147

6 Linear Analysis and Small-Signal Stability 149

6.1 Introduction 149

6.2 Electromechanical Modes 150

6.3 Linearization 151

6.3.1 State-Space Models 151

6.3.2 Input-Output Models 152

6.3.3 Modal Analysis and Time-Domain Solutions 152

6.3.4 Time Response of Linear Systems 154

6.3.5 Participation Factors 156

6.4 Linearized Models of Single-Machine Infinite-Bus Systems 157

6.5 Linearized Models of Multi-Machine Systems 160

6.5.1 Synchronizing Torque Matrix and Eigenvalue Properties 162

6.5.2 Modeshapes and Participation Factors 162

6.6 Developing Linearized Models of Large Power Systems 164

6.6.1 Analytical Partial Derivatives 165

6.6.2 Numerical Linearization 169

6.7 Summary and Notes 171

Problems 171

Part II Synchronous Machine Models and their Control Systems 175

7 Steady-State Models and Operation of Synchronous Machines 177

7.1 Introduction 177

7.2 Physical Description 177

7.2.1 Amortisseur Bars 179

7.3 Synchronous Machine Model 179

7.3.1 Flux Linkage and Voltage Equations 181

7.3.2 Stator (Armature) Self and Mutual Inductances 183

7.3.3 Mutual Inductances between Stator and Rotor 183

7.3.4 Rotor Self and Mutual Inductances 184

7.4 Park Transformation 185

7.4.1 Electrical Power in dq0 Variables 188

7.5 Reciprocal, Equal Lad Per-Unit System 189

7.5.1 Stator Base Values 189

7.5.2 Stator Voltage Equations 190

7.5.3 Rotor Base Values 191

7.5.4 Rotor Voltage Equations 191

7.5.5 Stator Flux-Linkage Equations 192

7.5.6 Rotor Flux-Linkage Equations 192

7.5.7 Equal Mutual Inductance 192

7.6 Equivalent Circuits 196

7.6.1 Flux-Linkage Circuits 196

7.6.2 Voltage Equivalent Circuits 197

7.7 Steady-State Analysis 199

7.7.1 Open-Circuit Condition 199

7.7.2 Loaded Condition 201

7.7.3 Drawing Voltage-Current Phasor Diagrams 202

7.8 Saturation Effects 204

7.8.1 Representations of Magnetic Saturation 205

7.9 Generator Capability Curves 207

7.10 Summary and Notes 209

Problems 209

8 Dynamic Models of Synchronous Machines 213

8.1 Introduction 213

8.2 Machine Dynamic Response During Fault 213

8.2.1 DC Offset and Stator Transients 215

8.3 Transient and Subtransient Reactances and Time Constants 216

8.4 Subtransient Synchronous Machine Model 221

8.5 Other Synchronous Machine Models 227

8.5.1 Flux-Decay Model 227

8.5.2 Classical Model 228

8.6 dq-axes Rotation Between a Generator and the System 229

8.7 Power System Simulation using Detailed Machine Models 230

8.7.1 Power System Simulation Algorithm 231

8.8 Linearized Models 232

8.9 Summary and Notes 234

Problems 235

9 Excitation Systems 237

9.1 Introduction 237

9.2 Excitation System Models 238

9.3 Type DC Exc



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.