Buch, Englisch, 378 Seiten, Format (B × H): 157 mm x 231 mm, Gewicht: 703 g
Materials and Applications
Buch, Englisch, 378 Seiten, Format (B × H): 157 mm x 231 mm, Gewicht: 703 g
Reihe: Electrochemical Energy Storage and Conversion
ISBN: 978-1-4822-3759-7
Verlag: CRC Press
Cleavage of water to its constituents (i.e., hydrogen and oxygen) for production of hydrogen energy at an industrial scale is one of the "holy grails" of materials science. That can be done by utilizing the renewable energy resource i.e. sunlight and photocatalytic material. The sunlight and water are abundant and free of cost available at this planet. But the development of a stable, efficient and cost-effective photocatalytic material to split water is still a great challenge. To develop the effective materials for photocatalytic water splitting, various type of materials with different sizes and structures from nano to giant have been explored that includes metal oxides, metal chalcogenides, carbides, nitrides, phosphides, and so on. Fundamental concepts and state of art materials for the water splitting are also discussed to understand the phenomenon/mechanism behind the photoelectrochemical water splitting. This book gives a comprehensive overview and description of the manufacturing of photocatalytic materials and devices for water splitting by controlling the chemical composition, particle size, morphology, orientation and aspect ratios of the materials. The real technological breakthroughs in the development of the photoactive materials with considerable efficiency, are well conversed to bring out the practical aspects of the technique and its commercialization.
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction to hydrogen as a green fuel. Concepts and definitions in photochemical water splitting. Water splitting technologies for hydrogen generation. Electrochemical water splitting. Oxide semiconductors (ZnO, TiO2, Fe2O3, WO3, etc) as photocatalysts for water splitting. Non oxide semiconductor materials for water splitting. Nanostructured semiconducting materials for water splitting. Giant sized materials for water splitting (supramolecular, dendrimers composite, etc). Fundamental understanding of the photocatalytic mechanisms. Photochemical cell designs, fabrication, performance, degradation, and diagnosis for efficient solar hydrogen production.