Cho / Saadati / Rassias | Stability of Functional Equations in Random Normed Spaces | Buch | 978-1-4939-0110-4 | sack.de

Buch, Englisch, Band 86, 246 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 4102 g

Reihe: Springer Optimization and Its Applications

Cho / Saadati / Rassias

Stability of Functional Equations in Random Normed Spaces

Buch, Englisch, Band 86, 246 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 4102 g

Reihe: Springer Optimization and Its Applications

ISBN: 978-1-4939-0110-4
Verlag: Springer


This book discusses the rapidly developing subject of mathematical analysis that deals primarily with stability of functional equations in generalized spaces. The fundamental problem in this subject was proposed by Stan M. Ulam in 1940 for approximate homomorphisms. The seminal work of Donald H. Hyers in 1941 and that of Themistocles M. Rassias in 1978 have provided a great deal of inspiration and guidance for mathematicians worldwide to investigate this extensive domain of research.

The book presents a self-contained survey of recent and new results on topics including basic theory of random normed spaces and related spaces; stability theory for new function equations in random normed spaces via fixed point method, under both special and arbitrary t-norms; stability theory of well-known new functional equations in non-Archimedean random normed spaces; and applications in the class of fuzzy normed spaces. It contains valuable results on stability in random normed spaces, and is geared toward both graduate students and research mathematicians and engineers in a broad area of interdisciplinary research.

Cho / Saadati / Rassias Stability of Functional Equations in Random Normed Spaces jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Preface.- 1. Preliminaries.- 2. Generalized Spaces.- 3. Stability of Functional Equations in Random Normed Spaces Under Special t-norms.- 4. Stability of Functional Equations in Random Normed Spaces Under Arbitrary t-norms.- 5. Stability of Functional Equations in random Normed Spaces via Fixed Point Method.- 6. Stability of Functional Equations in Non-Archimedean Random Spaces.- 7. Random Stability of Functional Equations Related to Inner Product Spaces.- 8. Random Banach Algebras and Stability Results.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.