Buch, Englisch, 284 Seiten, Format (B × H): 221 mm x 286 mm, Gewicht: 986 g
Principles and Applications in Radiation Oncology
Buch, Englisch, 284 Seiten, Format (B × H): 221 mm x 286 mm, Gewicht: 986 g
Reihe: Imaging in Medical Diagnosis and Therapy
ISBN: 978-1-4398-7875-0
Verlag: CRC Press
Rapid advances in nanotechnology have enabled the fabrication of nanoparticles from various materials with different shapes, sizes, and properties, and efforts are ongoing to exploit these materials for practical clinical applications. Nanotechnology is particularly relevant in the field of oncology, as the leaky and chaotic vasculature of tumors—a hallmark of unrestrained growth—results in the passive accumulation of nanoparticles within tumors.
Cancer Nanotechnology: Principles and Applications in Radiation Oncology is a compilation of research in the arena of nanoparticles and radiation oncology, which lies at the intersection of disciplines as diverse as clinical radiation oncology, radiation physics and biology, nanotechnology, materials science, and biomedical engineering. The book provides a comprehensive, cross-disciplinary survey of basic principles, research techniques, and outcomes with the goals of eventual clinical translation.
Coverage includes
- A general introduction to fabrication, preferential tumor targeting, and imaging of nanoparticles
- The specific applications of nanomaterials in the realms of radiation therapy, hyperthermia, thermal therapy, and normal tissue protection from radiation exposure
- Outlooks for future research and clinical translation including regulatory issues for ultimate use of nanomaterials in humans
Reflecting profound advances in the application of nanotechnology to radiation oncology, this comprehensive volume demonstrates how the unique physicochemical properties of nanoparticles lead to novel strategies for cancer treatment and detection. Along with various computational and experimental techniques, each chapter highlights the most promising approaches to the use of nanoparticles for radiation response modulation.
Zielgruppe
Physicists, clinicians, engineers, chemists, and biologists in oncology, radiation therapy, cancer research, and nanotechnology; graduate students in medical physics and biomedical engineering.
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Technik Allgemein Nanotechnologie
- Technische Wissenschaften Verfahrenstechnik | Chemieingenieurwesen | Biotechnologie Biotechnologie Medizinische Biotechnologie
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Klinische und Innere Medizin Onkologie, Krebsforschung
Weitere Infos & Material
Basic Principles of Radiation Oncology and Radiosensitization. Synthesis, Safety, and Imaging of Nanomaterials for Cancer Applications. Nanomaterials for Radiation Therapy. Nanomaterials for Hyperthermia and Thermal Therapy. Future Outlook.