Chinthaginjala / Sitek / Rodríguez | Distributed Computing and Artificial Intelligence, 21st International Conference | Buch | 978-3-031-82072-4 | sack.de

Buch, Englisch, Band 1259, 368 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: Lecture Notes in Networks and Systems

Chinthaginjala / Sitek / Rodríguez

Distributed Computing and Artificial Intelligence, 21st International Conference


Erscheinungsjahr 2025
ISBN: 978-3-031-82072-4
Verlag: Springer Nature Switzerland

Buch, Englisch, Band 1259, 368 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 581 g

Reihe: Lecture Notes in Networks and Systems

ISBN: 978-3-031-82072-4
Verlag: Springer Nature Switzerland


This book serves as a forum to present applications of innovative techniques for studying and solving complex problems in artificial intelligence and computing. This edition brings together experience, current work, and promising future trends related to distributed computing, artificial intelligence, and their applications to provide efficient solutions to real-world problems. The technical program this year is both high in quality and diverse, featuring contributions from well-established and evolving research areas. Specifically, 138 papers were submitted by authors from 43 different countries, representing a truly global network of research activity. The DCAI’24 technical program has selected 36 full papers for the main track, and as in previous editions, there will be special issues in ranked journals. This symposium is organized by the University of Salamanca (Spain). The authors would like to thank all the contributing authors, the program committee members, National Associations (AEPIA, APPIA, LASI), and the sponsors (AIR Institute).

Chinthaginjala / Sitek / Rodríguez Distributed Computing and Artificial Intelligence, 21st International Conference jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- 1 Adaptive Traffic Light Control through Reinforcement Learning based on Sensor Integration.

.- 2 Improvement of anomaly detection through enhanced feature extraction in TimesNet.

.- 3 An Explainable AI framework for comparative analysis of the model explanations in Breast Cancer Prediction.

.- 4 Enhancing Power Forecasting Through Contextual Awareness With C-Means and K-Means Approaches.

.- 5 Development and Assessment of a System to Help Students Improve Self-Compassion.

.- 6 Leveraging Machine Learning and Deep Learning Models for Enhanced Stock Price Prediction: A State-of-the-Art Analysis.

.- 7 Type-Theory of Algorithms with Chain-Free Memory, etc.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.