Buch, Englisch, 257 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 4161 g
Theory, Algorithms and Applications
Buch, Englisch, 257 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 4161 g
Reihe: Advances in Computer Vision and Pattern Recognition
ISBN: 978-1-4471-7251-2
Verlag: Springer
This unique text/reference presents a comprehensive review of the state of the art in sparse representations, modeling and learning. The book examines both the theoretical foundations and details of algorithm implementation, highlighting the practical application of compressed sensing research in visual recognition and computer vision. Topics and features: describes sparse recovery approaches, robust and efficient sparse representation, and large-scale visual recognition; covers feature representation and learning, sparsity induced similarity, and sparse representation and learning-based classifiers; discusses low-rank matrix approximation, graphical models in compressed sensing, collaborative representation-based classification, and high-dimensional nonlinear learning; includes appendices outlining additional computer programming resources, and explaining the essential mathematics required to understand the book.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Mustererkennung, Biometrik
- Mathematik | Informatik EDV | Informatik Informatik Bildsignalverarbeitung
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Signalverarbeitung, Bildverarbeitung, Scanning
- Technische Wissenschaften Elektronik | Nachrichtentechnik Nachrichten- und Kommunikationstechnik Signalverarbeitung
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Computer Vision
Weitere Infos & Material
Part I: Introduction and Fundamentals.- Introduction.- The Fundamentals of Compressed Sensing.- Part II: Sparse Representation, Modeling and Learning.- Sparse Recovery Approaches.- Robust Sparse Representation, Modeling and Learning.- Efficient Sparse Representation and Modeling.- Part III: Visual Recognition Applications.- Feature Representation and Learning.- Sparsity Induced Similarity.- Sparse Representation and Learning Based Classifiers.- Part IV: Advanced Topics.- Beyond Sparsity.- Appendix A: Mathematics.- Appendix B: Computer Programming Resources for Sparse Recovery Approaches.- Appendix C: The source Code of Sparsity Induced Similarity.- Appendix D: Derivations.