Cheng / Du | Steiner Trees in Industry | Buch | 978-1-4020-0099-7 | sack.de

Buch, Englisch, Band 11, 507 Seiten, Format (B × H): 169 mm x 247 mm, Gewicht: 2000 g

Reihe: Combinatorial Optimization

Cheng / Du

Steiner Trees in Industry

Buch, Englisch, Band 11, 507 Seiten, Format (B × H): 169 mm x 247 mm, Gewicht: 2000 g

Reihe: Combinatorial Optimization

ISBN: 978-1-4020-0099-7
Verlag: Springer Us


This book is a collection of articles studying various Steiner tree prob­ lems with applications in industries, such as the design of electronic cir­ cuits, computer networking, telecommunication, and perfect phylogeny. The Steiner tree problem was initiated in the Euclidean plane. Given a set of points in the Euclidean plane, the shortest network interconnect­ ing the points in the set is called the Steiner minimum tree. The Steiner minimum tree may contain some vertices which are not the given points. Those vertices are called Steiner points while the given points are called terminals. The shortest network for three terminals was first studied by Fermat (1601-1665). Fermat proposed the problem of finding a point to minimize the total distance from it to three terminals in the Euclidean plane. The direct generalization is to find a point to minimize the total distance from it to n terminals, which is still called the Fermat problem today. The Steiner minimum tree problem is an indirect generalization. Schreiber in 1986 found that this generalization (i.e., the Steiner mini­ mum tree) was first proposed by Gauss.
Cheng / Du Steiner Trees in Industry jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Steiner Minimum Trees in Uniform Orientation Metrics.- Genetic Algorithm Approaches to Solve Various Steiner Tree Problems.- Neural Network Approaches to Solve Various Steiner Tree Problems.- Steiner Tree Problems in VLSI Layout Designs.- Polyhedral Approaches for the Steiner Tree Problem on Graphs.- The Perfect Phylogeny Problem.- Approximation Algorithms for the Steiner Tree Problem in Graphs.- A Proposed Experiment on Soap Film Solutions of Planar Euclidean Steiner Trees.- SteinLib: An Updated Library on Steiner Tree Problems in Graphs.- Steiner Tree Based Distributed Multicast Routing in Networks.- On Cost Allocation in Steiner Tree Networks.- Steiner Trees and the Dynamic Quadratic Assignment Problem.- Polynomial Time Algorithms for the Rectilinear Steiner Tree Problem.- Minimum Networks for Separating and Surrounding Objects.- A First Level Scatter Search Implementation for Solving the Steiner Ring Problem in Telecommunications Network Design.- The Rectilinear Steiner Tree Problem: A Tutorial.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.