Cheng / Deng / Zhou | Harmonic Analysis | Buch | 978-3-540-54901-7 | sack.de

Buch, Englisch, Band 1494, 234 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Lecture Notes in Mathematics

Cheng / Deng / Zhou

Harmonic Analysis

Proceedings of the special program at the Nankai Institute of Mathematics, Tianjin, PR China, March-July, 1988
1991
ISBN: 978-3-540-54901-7
Verlag: Springer Berlin Heidelberg

Proceedings of the special program at the Nankai Institute of Mathematics, Tianjin, PR China, March-July, 1988

Buch, Englisch, Band 1494, 234 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g

Reihe: Lecture Notes in Mathematics

ISBN: 978-3-540-54901-7
Verlag: Springer Berlin Heidelberg


All papers in this volume are original (fully refereed)
research reports by participants of the special program on
Harmonic Analysis held in the Nankai Institute of
Mathematics. The main themes include: Wavelets, Singular
Integral Operators, Extemal Functions, H Spaces, Harmonic
Analysis on Local Domains and Lie Groups, and so on. See
also:G. David "Wavelets and Singular Integrals on Curves
and Surfaces", LNM 1465,1991.
FROM THE CONTENTS: D.C. Chang: Nankai Lecture in -Neumann
Problem.- T.P. Chen, D.Z. Zhang: Oscillary Integral with
Polynomial Phase.- D.G. Deng, Y.S. Han: On a Generalized
Paraproduct Defined by Non-Convolution.- Y.S. Han: H
Boundedness of Calderon-Zygmund Operators for Product
Domains.- Z.X. Liu, S.Z. Lu: Applications of H rmander
Multiplier Theorem to Approximation in Real Hardy Spaces.-
R.L. Long, F.S. Nie: Weighted Sobolev Inequality and
Eigenvalue Estimates of Schr dinger Operator.- A. McIntosh,
Q. Tao: Convolution Singular Integral Operators on Lipschitz
Curves.- Z.Y. Wen, L.M.Wu, Y.P. Zhang: Set of Zeros of
Harmonic Functions of Two Variables.- C.K. Yuan: On the
Structures of Locally Compact Groups Admitting Inner
Invariant Means.

Cheng / Deng / Zhou Harmonic Analysis jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Nankai lecture in -Neumann problem.- Duality of H 1 and BMO on positively curved manifolds and their characterizations.- Oscillatory integral with polynomial phase.- On a generalized paraproduct defined by non-convolution.- H p boundedness of claderón-Zygmund operators for product domains.- A ? condition characterized by maximal geometric mean operator.- A weighted norm inequality for oscillatory singular integrals.- The nilpotent Lie group G d+2 and a class of differential operators with multiple characteristics.- Characterization of BMO p sq - functions by generalized Carleson measure.- Besov spaces of paley-wiener type.- The weak H p spaces on homogeneous groups.- Applications of Hörmander multiplier theorem to approximation in real Hardy spaces.- Weighted norm inequalities for the restriction of fourier transform to S n?1.- Weighted sobolev inequality and eigenvalue estimates of Schrödinger operators.- Convolution singular integral operators on lipschitz curves.- Multipliers from L 1 (G) to a reflexive segal algebra.- Weighted norm inequalities for certain maximal operators with approach regions.- The hausdorff dimension of a class of lacunary trigonomitric series.- Hermitian nilpotent lie groups: Harmonic analysis as spectral theory of Laplacians.- Weak coupling asymptotics of schrodinger operators with stark effect.- Set of zeros of harmonic functions of two variables.- Ergodic theorem for the functions with uniform mean.- On the structures of locally compact groups admitting inner invariant means.- Harmonic boundaries and poisson integrals on symmetric spaces.- On p-adic cantor function.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.