Chen / Wilson | Advanced Statistical Analytics for Health Data Science with SAS and R | Buch | 978-1-032-97849-9 | sack.de

Buch, Englisch, 265 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 564 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Chen / Wilson

Advanced Statistical Analytics for Health Data Science with SAS and R


1. Auflage 2025
ISBN: 978-1-032-97849-9
Verlag: Chapman and Hall/CRC

Buch, Englisch, 265 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 564 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-032-97849-9
Verlag: Chapman and Hall/CRC


In recent years, there has been a growing emphasis on making statistical methods and analytics accessible to health data science researchers and students. Following the first book on "Statistical Analytics for Health Data Science with SAS and R" (2023, www.routledge.com/9781032325620), this book serves as a comprehensive reference for health data scientists, bridging fundamental statistical principles with advanced analytical techniques. By providing clear explanations of statistical theory and its application to real- world health data, we aim to equip researchers with the necessary tools to navigate the evolving landscape of health data science.

Designed for advanced-level data scientists, this book covers a wide range of statistical methodologies, including models for longitudinal data with time-dependent covariates, multi-membership mixed-effects models, statistical modeling of survival data, Bayesian statistics, joint modeling of longitudinal and survival data, nonlinear regression, statistical meta-analysis, spatial statistics, structural equation modeling, latent growth curve modeling, causal inference, and propensity score analysis.

A key feature of this book is its emphasis on real-world applications. We integrate publicly available health datasets and provide case studies from a variety of health applications. These practical examples demonstrate how statistical methods can be applied to solve critical problems in health science.

To support hands-on learning, we offer implementation guidance using SAS and R, ensuring that readers can replicate analyses and apply statistical techniques to their own research. Step-by-step computational examples facilitate reproducibility and deeper exploration of statistical models. By combining theoretical foundations with practical applications, this book empowers health data scientists to develop robust statistical solutions for complex health challenges. Whether working in academia, industry, or public health, readers will gain the expertise to advance data-driven decision-making and contribute to evidence-based health research.

Chen / Wilson Advanced Statistical Analytics for Health Data Science with SAS and R jetzt bestellen!

Zielgruppe


Undergraduate Advanced

Weitere Infos & Material


12. Marginal Models for Binary Longitudinal Outcomes with Time-Dependent Covariates. 13. Multiple Models for Binary Longitudinal Mixed-Model Effects. 14. Statistical Modeling of Survival Data Statistical. 15. Statistical Modeling with Bayesian Paradigm. 16. Jointly Modeling to Analyze Longitudinal and Survival Data with Bayesian Approach. 17. Nonlinear Regression. 18. Statistical Meta-Analysis. 19. Spatial Statistical Analysis. 20. Structural Equation Modeling. 21. Longitudinal Data Analysis and Latent Growth Curve Modelling. 22. Latent Growth Mixture Joint Modeling in Intervention Research. 23. Causal Inference and Propensity Score Analysis.


Dr Ding-Geng Chen is an elected fellow of the American Statistical Association and an elected member of the International Statistical Institute. Currently he is the executive director and professor in biostatistics at the College of Health Solutions, Arizona State University. Dr. Chen has more than 250 referred professional publications and co-authored and co-edited 42 books on clinical trial methodology, meta-analysis, data science, causal inference, and public health statistics.

Dr. Jeffrey Wilson is a Professor of Statistics and Biostatistics and serves as the Associate Dean of Research and Inclusive Excellence. His research focuses on statistical analysis of binary correlated data, and he has authored numerous peer-reviewed articles in the field. He has received several prestigious honors, including the 2024 Dr. Martin Luther King Jr. Faculty.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.