Buch, Englisch, Band 140, 387 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g
Buch, Englisch, Band 140, 387 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 781 g
Reihe: Intelligent Systems Reference Library
ISBN: 978-3-319-68842-8
Verlag: Springer International Publishing
Medical imaging offers essential information on patients’ medical condition, and clues to causes of their symptoms and diseases. Modern imaging modalities, however, also produce a large number of images that physicians have to accurately interpret. This can lead to an “information overload” for physicians, and can complicate their decision-making. As such, intelligent decision support systems have become a vital element in medical-image-based diagnosis and treatment.
Presenting extensive information on this growing field of AI, the book offers a valuable reference guide for professors, students, researchers and professionals who want to learn about the most recent developments and advances in the field.Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizin, Gesundheitswesen Medizintechnik, Biomedizintechnik, Medizinische Werkstoffe
- Medizin | Veterinärmedizin Medizin | Public Health | Pharmazie | Zahnmedizin Medizinische Fachgebiete Bildgebende Verfahren, Nuklearmedizin, Strahlentherapie Radiologie, Bildgebende Verfahren
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Technische Wissenschaften Sonstige Technologien | Angewandte Technik Medizintechnik, Biomedizintechnik
Weitere Infos & Material
Multi-modality Feature Learning in Diagnoses of Alzheimer’s Disease.- A Comparative Study of Modern Machine Learning Approaches for Focal Lesion Detection and Classification in Medical Images: BoVW, CNN and MTANN.- Introduction to Binary Coordinate Ascent: New Insights into Efficient Feature Subset Selection for Machine Learning.- Automated Lung Nodule Detection Using Positron Emission Tomography/Computed Tomography.- Detecting Mammographic Masses via Image Retrieval and Discriminative Learning.