Buch, Englisch, 225 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 590 g
Uncertainty Quantification, State Estimation, and Reduced-Order Models
Buch, Englisch, 225 Seiten, Format (B × H): 173 mm x 246 mm, Gewicht: 590 g
Reihe: Synthesis Lectures on Mathematics & Statistics
ISBN: 978-3-031-81923-0
Verlag: Springer Nature Switzerland
This Second Edition is an essential guide to understanding, modeling, and predicting complex dynamical systems using new methods with stochastic tools. Expanding upon the original book, the author covers a unique combination of qualitative and quantitative modeling skills, novel efficient computational methods, rigorous mathematical theory, as well as physical intuitions and thinking. The author presents mathematical tools for understanding, modeling, and predicting complex dynamical systems using various suitable stochastic tools. The book provides practical examples and motivations when introducing these tools, merging mathematics, statistics, information theory, computational science, and data science. The author emphasizes the balance between computational efficiency and modeling accuracy while equipping readers with the skills to choose and apply stochastic tools to a wide range of disciplines. This second edition includes updated discussion of combining stochastic models with machine learning and addresses several additional topics, including importance sampling, regression, and maximum likelihood estimate. The author also introduces a new chapter on optimal control.
Zielgruppe
Graduate
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken
- Mathematik | Informatik EDV | Informatik Informatik Theoretische Informatik
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
Weitere Infos & Material
Stochastic Toolkits.- Introduction to Information Theory.- Basic Stochastic Computational Methods.- Simple Gaussian and Non-Gaussian SDEs.- Data Assimilation.- Optimal Control.- Prediction.- Data-Driven Low-Order Stochastic Models.- Conditional Gaussian Nonlinear Systems.- Parameter Estimation with Uncertainty Quantification.- Combining Stochastic Models with Machine Learning.- Instruction Manual for the MATLAB Codes.