E-Book, Englisch, 388 Seiten, eBook
Chen / Song Split Hopkinson (Kolsky) Bar
1. Auflage 2010
ISBN: 978-1-4419-7982-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
Design, Testing and Applications
E-Book, Englisch, 388 Seiten, eBook
Reihe: Mechanical Engineering Series
ISBN: 978-1-4419-7982-7
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
The authors systematically describe the general principles of Kolsky bars, or split Hopkinson bars, which are widely used for obtaining dynamic material properties. Modifications are introduced for obtaining reliable data. Specific experiment design guidelines are provided to subject the specimen to desired testing conditions.
Detailed Kolsky-bar examples are given for different classes of materials (brittle, ductile, soft, etc) and for different loading conditions (tension, torsion, triaxial, high/low temperatures, intermediate strain rate, etc). The Kolsky bars used for dynamic structural characterization are briefly introduced. A collection of dynamic properties of various materials under various testing conditions is included which may serve as a reference database.
This book assists both beginners and experienced professionals in characterizing high-rate material response with high quality and consistency. Readers who may benefit from this work include university students, instructors, R & D professionals, and scholars/engineers in solid mechanics, aerospace, civil and mechanical engineering, as well as materials science and engineering.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Table of Contents;8
3;Chapter 1. Conventional Kolsky bars;12
3.1;1.1 Background;12
3.2;1.2 A Brief History of the Kolsky Bar;14
3.3;1.3 General Description of Kolsky Compression Bar;18
3.4;1.4 Design of Kolsky Compression Bar;28
3.5;1.5 Kolsky Bars of Large and Small Diameters;35
3.6;1.6 Calibration and Data Reduction of KolskyCompression Bar Experiments;38
4;Chapter 2. Testing Conditions in Kolsky BarExperiments;47
4.1;2.1 One-dimensional Planar Elastic Wave Propagation;47
4.2;2.2 Interfacial Friction;55
4.3;2.3 Inertia Effects in Specimen;56
4.4;2.4 Constant Strain Rate Deformation;59
4.5;2.5 Pulse Shaping Technique;60
4.6;2.6 Single Loading and Unloading Control;72
4.7;2.7 Upper Limit of Strain Rate;79
5;Chapter 3. Kolsky Compression Bar Experimentson Brittle Materials;86
5.1;3.1 Brittle Specimens in Kolsky Bar;86
5.2;3.2 Platens to Minimize Stress Concentration;91
5.3;3.3 Universal Joint;93
5.4;3.4 Pulse Shaping;96
5.5;3.5 Experiment Design for Brittle Materials;97
5.5.1;3.5.1 Macor and Limestone;97
5.5.2;3.5.2 Loading-Reloading on Ceramics;105
5.5.3;3.5.3 S-2 Glass/SC15 Composite;116
5.5.4;3.5.4 Glass Failure under Compression/Shear;122
6;Chapter 4. Kolsky Compression Bar Experimentson Soft Materials;128
6.1;4.1 Challenges in Characterizing Soft Materials;128
6.2;4.2 Specimen Design;134
6.3;4.3 Pulse Shaping;140
6.4;4.4 Force Sensing;142
6.5;4.5 Experiment Design;149
6.5.1;4.5.1 Polymethyl Methacrylate (PMMA);151
6.5.2;4.5.2 Rubbers;153
6.5.2.1;4.5.2.1 Soybean-Oil Based Polymers;154
6.5.2.2;4.5.2.2 ESO-NanoClay Composites;159
6.5.2.3;4.5.2.3 EPDM Rubber;162
6.5.3;4.5.3 Foams;163
6.5.3.1;4.5.3.1 Brittle Foams;163
6.5.3.2;4.5.3.2 Elastic-plastic Foam;167
6.5.4;4.5.4 Biological Tissues;175
6.5.4.1;4.5.4.1 Porcine Muscles;175
6.5.4.2;4.5.4.2 Brain Tissues;181
7;Chapter 5. Kolsky Compression Bar Experimentson Ductile Materials;185
7.1;5.1 Issues in Kolsky-Bar Experiments on Ductile Materials;185
7.2;5.2 Pulse Shaping;188
7.3;5.3 Experiment Design for Ductile Materials;192
7.3.1;5.3.1 Metals;193
7.3.2;5.3.2 Shape Memory Alloy;205
7.3.3;5.3.3 Alumina Filled Epoxy;208
7.3.4;5.3.4 Lead-free Solder;213
8;Chapter 6. Kolsky Compression Bar for DynamicTriaxial Experiments;216
8.1;6.1 Modified Kolsky Bar for Dynamic Triaxial Tests;216
8.2;6.2 Specimen Design and Installation;219
8.3;6.3 Local Pressure and Deformation Measurements;220
8.4;6.4 Pulse Shaping;224
8.5;6.5 Dynamic Multiaxial Response of Sand;226
8.6;6.6 Response of Indiana Lime Stone under Pressure;230
8.7;6.7 Dynamic Confinement Experiments on Soft Materials;233
9;Chapter 7. Kolsky Compression Bar Experiments at High/Low Temperatures;239
9.1;7.1 Heating/Cooling the Specimen;239
9.2;7.2 An Automated System for Precise Timing Control;243
9.3;7.3 High Temperature Experiments on a Stainless Steel;248
9.4;7.4 Temperature Effects on a Shape Memory Alloy;255
9.5;7.5 Temperature Effects on an Epoxy Syntactic Foam;257
9.6;7.6 Temperature Effects on PMDI Foams;263
10;Chapter 8. Kolsky Bar for DynamicTensile/Torsion Experiments;267
10.1;8.1 Methods to Apply Dynamic Tension on Specimens;267
10.2;8.2 Tension Specimen Design;277
10.3;8.3 Pulse Shaping in Tension Experiments;281
10.4;8.4 Methods to Generate Dynamic Torque;281
10.5;8.5 Torsion Specimen Design;284
10.6;8.6 Combined Axial/Torsion Loading;285
10.7;8.7 Examples of Dynamic Tensile Experiments;286
10.7.1;8.7.1 Epoxy and PMMA;286
10.7.2;8.7.2 Bovine Tendon;290
10.7.3;8.7.3 Rubber;293
11;Chapter 9. Kolsky Compression Bar Experimentsat Intermediate Strain Rates;296
11.1;9.1 Lack of Data at Intermediate Strain Rates;296
11.2;9.2 Material Testing Methods at Intermediate Rates;297
11.3;9.3 Intermediate Strain-rate Characterization of Polymeric Foams;308
12;Chapter 10. Kolsky Bar for Dynamic StructuralExperiments;317
12.1;10.1 Dynamic Fracture;317
12.2;10.2 Dynamic Equi-biaxial Bending Experiments;333
12.3;10.3 Dynamic Response of Micro-machined Structures;338
12.4;10.4 Low-speed Penetration;348
13;APPENDIX A PULSE SHAPING FORTRAN CODE;352
14;References;377