Buch, Englisch, 156 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 430 g
Reihe: Wireless Networks
Buch, Englisch, 156 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 430 g
Reihe: Wireless Networks
ISBN: 978-3-031-16821-5
Verlag: Springer International Publishing
Researchers working in mobile edge computing, task offloading and resource management, as well as advanced level students in electrical and computer engineering, telecommunications, computer science or other related disciplines will find this book useful as a reference. Professionals working within these related fields will also benefit from this book.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Introduction.- 1.1 Background.- 1.1.1 Mobile Cloud Computing.- 1.1.2 Mobile Edge Computing.- 1.1.3 Computation Offloading.- 1.2 Challenges.- 1.3 Contributions.- 1.4 Book Outline.- References.- 2 Dynamic Computation Offloading for Energy Efficiency in Mobile.- Edge Computing.- 2.1 System Model and Problem Statement.- 2.1.1 Network Model.- 2.1.2 Task Offloading Model.- 2.1.3 Task Queuing Model.- 2.1.4 Energy Consumption Model.- 2.1.5 Problem Statement.- 2.2 EEDCO: Energy Efficient Dynamic Computing Offloading for.- Mobile Edge Computing.- 2.2.1 Joint Optimization of Energy and Queue.- 2.2.2 Dynamic Computation Offloading for Mobile Edge.- Computing.- 2.2.3 Trade-off Between Queue Backlog and Energy Efficiency.- 2.2.4 Convergence and Complexity Analysis.- 2.3 Performance Evaluation.- 2.3.1 Impacts of Parameters.- 2.3.2 Performance Comparison with EA and QW Schemes.- 2.4 Literature Review.- 2.5 Summary.- References.- ix.- x Contents.- 3 Energy Efficient Offloading and Frequency Scaling forInternet of.- Things Devices.- 3.1 System Model and Problem Formulation.- 3.1.1 Network Model.- 3.1.2 Task Model.- 3.1.3 Queuing Model.- 3.1.4 Energy Consumption Model.- 3.1.5 Problem Formulation.- 3.2 COFSEE:Computation Offloading and Frequency Scaling for.- Energy Efficiency of Internet of Things Devices.- 3.2.1 Problem Transformation.- 3.2.2 Optimal Frequency Scaling.- 3.2.3 Local Computation Allocation.- 3.2.4 MEC Computation Allocation.- 3.2.5 Theoretical Analysis.- 3.3 Performance Evaluation.- 3.3.1 Impacts of System Parameters.- 3.3.2 Performance Comparison with RLE,RME and TS Schemes.- 3.4 Literature Review.- 3.5 Summary.- References.- 4 Deep Reinforcement Learning for Delay-aware and Energy-Efficient.- Computation Offloading.- 4.1 System Model and Problem formulation.- 4.1.1 System Mode.- 4.1.2 Problem Formulation.- 4.2 Proposed DRL Method.- 4.2.1 Data prepossessing.- 4.2.2 DRL Model.- 4.2.3 Training.- 4.3 Performance Evaluation.- 4.4 Literature Review.- 4.5 Summary.- References.- 5 Energy-Efficient Multi-task Multi-access Computation Offloading.- via NOMA.- 5.1 System Model and Problem Formulation.- 5.1.1 Motivation.- 5.1.2 System Model.- 5.1.3 Problem Formulation.- 5.2 LEEMMO: Layered Energy-efficient Multi-task Multi-access.- Algorithm.- 5.2.1 Layered Decomposition of Joint Optimization Problem.- Contents xi.- 5.2.2 Proposed Subroutine for Solving Problem (TEM-E-Sub).- 5.2.3 A Layered Algorithm for Solving Problem (TEM-E-Top).- 5.2.4 DRL-based Online Algorithm.- 5.3 Performance Evaluation.- 5.3.1 Impacts of Parameters.- 5.3.2 Performance Comparison with FDMA based Offloading.- Schemes.- 5.4 Literature Review.- 5.5 Summary.- Reference.- 6 Conclusion.- 6.1 Concluding Remarks.- 6.2 Future Directions.- References.