E-Book, Englisch, Band 769, 261 Seiten
Reihe: The Springer International Series in Engineering and Computer Science
Chen Progress on Cryptography
1. Auflage 2006
ISBN: 978-1-4020-7987-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
25 Years of Cryptography in China
E-Book, Englisch, Band 769, 261 Seiten
Reihe: The Springer International Series in Engineering and Computer Science
ISBN: 978-1-4020-7987-0
Verlag: Springer US
Format: PDF
Kopierschutz: 1 - PDF Watermark
"Cryptography in Chinese" consists of two characters meaning "secret coded". Thanks to Ch'in Chiu-Shao and his successors, the Chinese Remainder Theorem became a cornerstone of public key cryptography. Today, as we observe the constant usage of high-speed computers interconnected via the Internet, we realize that cryptography and its related applications have developed far beyond "secret coding".
China, which is rapidly developing in all areas of technology, is also writing a new page of history in cryptography. As more and more Chinese become recognized as leading researchers in a variety of topics in cryptography, it is not surprising that many of them are Professor Xiao's former students. "Progress on Cryptography: 25 Years of Cryptography in China" is a compilation of papers presented at an international workshop in conjunction with the ChinaCrypt, 2004. After 20 years, the research interests of the group have extended to a variety of areas in cryptography.
This edited volume includes 32 contributed chapters. The material will cover a range of topics, from mathematical results of cryptography to practical applications. This book also includes a sample of research, conducted by Professor Xiao's former and current students. "Progress on Cryptography: 25 Years of Cryptography in China" is designed for a professional audience, composed of researchers and practitioners in industry. This book is also suitable as a secondary text for graduate-level students in computer science, mathematics and engineering.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;7
2;Foreword;11
3;Preface;13
4;Randomness and Discrepancy Transforms;16
4.1;1. Introduction;16
4.2;2. Discrepancy Transforms;17
4.3;3. Runs of Discrepancy Sequences and Linear Span Profiles;19
4.4;4. Restricted Discrepancy Transforms and Filtering Generators with D-Permutations;20
4.5;5. Conclusion;22
4.6;References;23
5;Legendre Sequences and Modified Jacobi Sequences;24
5.1;Introduction;24
5.2;1. Legendre sequences;25
5.3;2. Modified Jacobi sequences;25
5.4;3. Polyphase Legendre sequences;26
5.5;4. Modified polyphase Jacobi sequences;27
5.6;5. Proof of Green’s conjecture;30
5.7;References;31
6;Resilient Functions with Good Cryptographic Properties;32
6.1;1. Introductions;32
6.2;2. Preliminaries;33
6.3;3. Previous constructions and results;34
6.4;4. New construction of resilient functions;35
6.5;5. Example;37
6.6;6. Conclusion;38
6.7;References;38
7;Differential Factoring for Integers;40
7.1;1. Introduction;40
7.2;2. Right shifting and its properties;41
7.3;3. An algorithm;41
7.4;4. A complementary algorithm;43
7.5;5. Some perfect primes are not perfect;44
7.6;6. Preprocessing for parallel computation;45
7.7;7. A few small examples;46
7.8;8. Concluding remarks;47
7.9;References;47
8;Simple and Efficient Systematic A-codes from Error Correcting Codes;48
8.1;1. Introduction;48
8.2;2. Systematic authentication codes and some bounds;49
8.3;3. The construction of the authentication codes;51
8.4;4. Specific constructions of authentication codes from error correcting codes;52
8.5;5. Open problems;57
8.6;6. Concluding remarks;57
8.7;References;57
9;On Coefficients of Binary Expression of Integer Sums;60
9.1;1. Introduction;60
9.2;2. preparation;61
9.3;3. Main theorem;62
9.4;4. Conclusions;66
9.5;References;66
10;A new publicly verifiable proxy signcryption scheme;68
10.1;1. Related works;69
10.2;2. The proposed proxy signcryption scheme;71
10.3;3. Analysis;72
10.4;4. Conclusion;72
10.5;References;72
11;Some New Proxy Signature Schemes from Pairings;74
11.1;1. Introduction;74
11.2;2. Preliminaries;75
11.3;3. The General Construction;77
11.4;4. New Proxy Signature Schemes;78
11.5;5. New Proxy Blind Signature Schemes;79
11.6;6. Conclusion;80
11.7;References;81
12;Construction of Digital Signature Schemes Based on DLP;82
12.1;1. Introduction;82
12.2;2. Constructions of schemes;83
12.3;3. Conclusion;86
12.4;References;86
13;DLP-based blind signatures and their application in E-Cash systems;88
13.1;1. Introduction;88
13.2;2. How to construct DLP-based blind signatures;89
13.3;3. Generalize some DLP-based blinding processes;92
13.4;4. The application of blind signatures in E-Cash;93
13.5;5. Conclusion;94
13.6;References;94
14;A Group of Threshold Group-Signature Schemes with Privilege Subsets;96
14.1;1. Introduction;96
14.2;2. Analysis on threshold scheme [8];97
14.3;3. threshold group-signature;98
14.3.1;3.1 Basic idea;98
14.3.2;3.2 Initiation;98
14.3.3;3.3 Generation of group key and secret pieces;99
14.3.4;3.4 Generation of threshold group-signature;99
14.3.5;3.5 Verification and Traceability;99
14.3.6;3.6 Threshold group-signature scheme with several privilege subsets;100
14.3.7;3.7 Instance without the assistance of KAC;100
14.4;4. Threshold group-signature schemes with message recovery;100
14.4.1;4.1 Generic threshold schemes of ElGamal type;100
14.4.2;4.2 Threshold schemes with message recovery;101
14.5;5. Analysis;102
14.6;References;103
15;A New Group Signature Scheme with Unlimited Group Size;104
15.1;1. Proxy signature with privacy protection;106
15.1.1;1.1 Notations;106
15.1.2;1.2 An improved proxy signature scheme;107
15.2;2. Group signature with unlimited group size;108
15.3;3. Properties analysis;109
15.4;4. Discussion;110
15.5;5. Conclusion;110
15.6;References;111
16;Identity Based Signature Scheme Based on Quadratic Residues;112
16.1;1. Introduction;112
16.2;2. Notation and related theorem;114
16.3;3. Identity based signature scheme based on quadratic residue problem( IBS- QR);115
16.4;4. Practical aspects;119
16.5;5. Comparison and conclusion;119
16.6;Notes;120
16.7;References;120
17;A New Digital Signature Scheme Based on Factoring and Discrete Logarithms;122
17.1;1. Introduction;122
17.2;2. He-Kiesler scheme and a simple attack;123
17.3;3. Modified He-Kiesler Signature Scheme;124
17.4;4. Conclusion;126
17.5;References;126
18;New Transitive Signature Scheme based on Discreted Logarithm Problem;128
18.1;Introduction;128
18.2;1. Definitions;129
18.3;2. New undirected transitive signature scheme;131
18.4;3. Correctness;133
18.5;4. Security;135
18.6;5. Conclusion;137
18.7;References;137
19;Blind signature schemes based on GOST signature;138
19.1;Introduction;138
19.2;1. GOST signature scheme;139
19.3;2. Blind GOST signature schemes;139
19.4;3. Conclusion;143
19.5;References;143
20;One-off Blind Public Key;144
20.1;Introduction;144
20.2;1. Definition and properties of one-off blind public key;144
20.3;2. Relative knowledge;145
20.3.1;2.1 The theorem comes from [5];145
20.3.2;2.2 The Fiat-Shamir identification scheme;145
20.3.3;2.3 Group signature [2];146
20.4;3. One-off blind public key protocol;146
20.4.1;3.1 The initialization of the trusted entity;146
20.4.2;3.2 Issue generative factor of blind public key for user;146
20.4.3;3.3 Calculation of blind public key;146
20.4.4;3.4 Verification of the validity of one-off blind public key.;147
20.4.5;3.5 Useing of one-off blind public key and the private key;147
20.5;4. Security analysis of one-off blind public key;148
20.6;5. The properties of one-off blind public key protocol;149
20.6.1;5.1 One transform blind signature;149
20.6.2;5.2 The check on one-off blind public key;150
20.6.3;5.3 The compose of one-off blind public key;150
20.6.4;5.4 The functions and the rights of the trusted entity;150
20.6.5;5.5 Comparison with group signature;151
20.7;6. Conclusion;151
20.8;References;151
21;Analysis on the two classes of Robust Threshold Key Escrow Schemes;152
21.1;1. Introduction;152
21.2;2. Review of two classes of robust threshold Key Escrow Schemes ( RTKES);153
21.3;3. Our viewpoints;155
21.4;4. Analysis basis on KES;155
21.5;5. Analysis on RTKES1;156
21.5.1;5.1 Analysis on Improved RSA;156
21.5.2;5.2 Analysis on escrow protocol;156
21.5.3;5.3 Subliminal channel attack on communication protocol;156
21.5.4;5.4 Analysis of monitor protocol;157
21.6;6. Analysis on RTKES2;157
21.7;7. Tag;159
21.8;References;159
22;Privacy-Preserving Approximately Equation Solving over Reals;160
22.1;1. Introduction;160
22.2;2. Approximately Multi–party Computation over Reals;161
22.3;3. Secure Multi–Party Equation Solving Problems and Protocols;163
22.4;4. Summary and Future Work;164
22.5;References;165
23;An Authenticated Key Agreement Protocol Resistant to DoS attack;166
23.1;1. Introduction;166
23.2;2. AKAKC Protocol;167
23.3;3. DoS attack;168
23.4;4. An improved protocol which can defeat DoS attack;168
23.4.1;4.1 Basic idea of the improved protocol [3];168
23.4.2;4.2 Description of the improved protocol;168
23.4.3;4.3 The analysis of the improved protocol;170
23.5;5. Summary;171
23.6;References;171
24;A comment on a multi-signature scheme;172
24.1;1. Introduction;172
24.2;2. Brief review of Burmester et al.’s scheme;172
24.3;3. Our attack;174
24.4;4. Summary;174
24.5;References;175
25;Cryptanalysis of LKK Proxy Signature;176
25.1;1. Introduction;176
25.2;2. Brief review of related schemes and our attack;177
25.2.1;2.1 Schnorr’s scheme [3];177
25.2.2;2.2 LKK strong proxy signature scheme;177
25.3;3. Our attack;178
25.4;4. Summary;179
25.5;References;179
26;Attack on Identity-Based Broadcasting Encryption Schemes;180
26.1;1. Introduction;180
26.2;2. Identity-Based Broadcasting Scheme: MSL Scheme 1;181
26.3;3. MSL Scheme 2 and Its Analysis;184
26.3.1;3.1 MSL Scheme 2;184
26.3.2;3.2 Linear Attack on MSL Scheme 2;185
26.4;4. Remark on the Assumption of the Order of the Group;186
26.5;5. Conclusion;187
26.6;References;187
27;Differential-Linear Cryptanalysis of Camellia;188
27.1;1. Introduction;188
27.2;2. Description of the Camellia;189
27.3;3. 4-Round Distinguisher;190
27.4;4. Attacks on Camellia Reduced to 9 and 10 Rounds;192
27.5;5. Conclusion;194
27.6;References;194
28;Security Analysis of EV-DO System;196
28.1;1. INTRODUCTION;196
28.2;2. EV-DO Security Architecture;197
28.3;3. EV-DO User Authentication;197
28.4;4. Session security in the air interface;200
28.5;5. Security analysis and suggestion;200
28.5.1;5.1 Weak;200
28.5.2;5.2 Improvement;200
28.6;6. Conclusion;201
28.7;Acknowledgments;201
28.8;References;201
29;A Remedy of Zhu-Lee-Deng’s Public Key Cryptosystem;202
29.1;1. Introduction;202
29.2;2. Notions and Definitions;203
29.3;3. Our remedy scheme;205
29.4;4. Conclusions;208
29.5;Acknowledgments;208
29.6;References;208
30;Quantum cryptographic algorithm for classical binary information;210
30.1;1. Quantum cryptographic algorithm;211
30.2;2. Security analysis;213
30.3;3. Physical realization;214
30.4;4. Summary;214
30.5;Acknowledgments;215
30.6;References;215
31;Practical Quantum Key Distribution Network based on Stratospehre platform;216
31.1;1. Feasibility of stratosphere QKD network;217
31.2;2. Models of QKD network;218
31.3;3. Implementation and applications;222
31.4;4. Summary;222
31.5;References;222
32;A Survey of P2P Network Security Issues based on Protocol Stack;224
32.1;1. Introduction;224
32.2;2. Basic Concepts;225
32.2.1;2.1 The P2P Network;225
32.2.2;2.2 The P2P Network Security;226
32.3;3. Secure Demands Analysis of the P2P Network;227
32.3.1;3.1 P2P Computing;227
32.3.2;3.2 Cooperation Computing;227
32.3.3;3.3 File Sharing;228
32.4;4. The P2P Network Security Hidden Danger and Attack;228
32.4.1;4.1 Connection Layer;228
32.4.2;4.2 Service Layer;229
32.4.3;4.3 Application Layer;230
32.5;5. Conclusion;230
32.6;References;231
33;DDoS Scouter: A simple IP traceback scheme;232
33.1;1. Introduction;232
33.2;2. Multi-edge marking;235
33.2.1;2.1 Record route IP option[2];235
33.2.2;2.2 Algorithm;235
33.2.3;2.3 Analysis;237
33.2.4;2.4 Authenticated multi-edge marking algorithm;237
33.3;3. DDoS Scouter;239
33.4;4. Simulation;240
33.5;5. Discussion;241
33.5.1;5.1 Fragmentation;241
33.5.2;5.2 Authentication;242
33.5.3;5.3 Cross-domains;242
33.6;6. Conclusion;242
33.7;References;243
34;A Method of Digital Data Transformation–Base91;244
34.1;1. Background of Invention;244
34.2;2. Contents of Invention;245
34.3;3. Conclusion;248
34.4;References;249
35;An approach to the formal analysis of TMN protocol;250
35.1;1. Introduction;250
35.2;2. The TMN protocol;251
35.3;3. Analysis of TMN protocol using Running-Mode;251
35.4;4. Attacks on the TMN protocol;254
35.5;5. Conclusion;258
35.6;References;258
36;Index;260
37;More eBooks at www.ciando.com;0
Simple and Efficient Systematic A-codes from Error Correcting Codes (p. 33-34)
Cunsheng Ding, Xiaojian Tian, Xuesong Wang
Abstract: In this paper, we present a simple and generic construction of systematic authentication codes which are optimal with respect to several bounds. The construction is based on error correcting codes. The authentication codes provide the best level of security with respect to spoofing attacks of various orders, including the impersonation and substitution attacks. The encoding of source states and the authentication verification are very simple and are perhaps the most efficient among all authentication systems.
Keywords: authentication codes, cryptography, linear codes.
1. Introduction
Nowadays authentication and secrecy of messages are two basic security requirements in many computer and communication systems, and therefore two important areas in cryptography. Authentication codes are designed to provide sender and message authentication, and dates back to 1994 when Gilbert, MacWilliams and Sloane published the first paper in this area [see Gilbert, MacWilliams, Sloane, 1974]. Later Simmons [Simmos, 1984] developed a theory of unconditional authentication, which is analogous to Shannon’s theory of unconditional secrecy [Shannon, 1949].
During the last tweenty years codes that provide authentication and/or secrecy have been considered, and bounds and characterizations of these codes have been established, see, for example, [Gilbert, MacWilliams, Sloane, 1974], [Stinson 1990], [Casse, Martin, and Wild, 1998]. Most existing optimal authentication codes are constructed from combinatorial designs, and seem hard to implement. Even if some of them can be implemented in software or hardware, the implementation may not be efficient. In addition, these authentication codes provide protection against the imperson ation and substitution attacks, but may not provide protection against spoofing attacks of order more than 1.
The purpose of this paper is to present a simple and generic construction of systematic authentication codes with the following properties:
* The authentication codes are optimal with respect to certain bounds.
* They offer the best security with respect to not only impersonation and substitution atacks, but also spoofing attacks of higher orders.
* The encoding of source states and authentication are extremely efficient and can be easily implemented in both software and hardware.
The construction of authentication codes presented here is based on error correcting codes, and is different from other constructions of authentication codes, see [Bierauer 1997], [Bierbrauer, Johansson, Kabatianskii and Smeets 1993], [Gilbert, Mac Williams, Sloane, 1974], [Kabatianskii, Smeets, and Johansson, 1996], [Simmons 1984], [Safavi-Naini and Seberry 1991], [Safavi-Naini, Wang and Xing 2001], using error correcting codes, in the sense that error correcting codes are employed to construct only the source states here in this paper.




