Buch, Englisch, Band 19, 592 Seiten, Format (B × H): 160 mm x 235 mm, Gewicht: 1007 g
Reihe: Cambridge Monographs on Applied and Computational Mathematics
Buch, Englisch, Band 19, 592 Seiten, Format (B × H): 160 mm x 235 mm, Gewicht: 1007 g
Reihe: Cambridge Monographs on Applied and Computational Mathematics
ISBN: 978-0-521-83828-3
Verlag: Cambridge University Press
Preconditioning techniques have emerged as an essential part of successful and efficient iterative solutions of matrices. Ke Chen's book offers a comprehensive introduction to these methods. A vast range of explicit and implicit sparse preconditioners are covered, including the conjugate gradient, multi-level and fast multi-pole methods, matrix and operator splitting, fast Fourier and wavelet transforms, incomplete LU and domain decomposition, Schur complements and approximate inverses. In addition, aspects of parallel realization using the MPI are discussed. Very much a users-guide, the book provides insight to the use of these techniques in areas such as acoustic wave scattering, image restoration and bifurcation problems in electrical power stations. Supporting MATLAB files are available from the Web to support and develop readers' understanding, and provide stimulus for further study. Pitched at graduate level, the book is intended to serve as a useful guide and reference for students, computational practitioners, engineers and researchers alike.
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Algebra Lineare und multilineare Algebra, Matrizentheorie
- Interdisziplinäres Wissenschaften Wissenschaften: Forschung und Information Datenanalyse, Datenverarbeitung
Weitere Infos & Material
1. Introduction; 2. Direct methods; 3. Iterative methods; 4. Matrix splitting preconditioners [t1]; 5. Approxi,ate inverse preconditioners [t2]; 6. Multilevel methods and preconditioners [t3]; 7. Multilevel recursive Schur complements preconditioners; 8. Wavelet preconditioners [t5] for ˆA n x n and ˆA -1 n x n; 9. Wavelet Schur preconditioners [t6]; 10. Implicit wavelet preconditioners [t7]; 11. Application I - acoustic scattering modelling; 12. Application II - coupled matrix problems; 13. Application III - image restoration and inverse problems; 14. Application IV-voltage stability in electrical power systems; 15. Parallel computing by examples.




