Chen | Handbook of Friction-Vibration Interactions | E-Book | sack.de
E-Book

E-Book, Englisch, 410 Seiten

Chen Handbook of Friction-Vibration Interactions


1. Auflage 2014
ISBN: 978-0-85709-459-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, 410 Seiten

ISBN: 978-0-85709-459-9
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Friction-vibration interactions are common but important phenomena in science and engineering. Handbook of Friction-Vibration Interactions introduces the principles and provides the resources to understand and work with them. A unified theoretical framework includes some of the most important engineering applications. The first three chapters in the book introduce basic concepts and analytical methods of friction and vibration. The fourth chapter presents the general principles on friction-vibration interactions, and also touches on various engineering applications. In the fifth chapter the concepts and methods are extended to some of the most critical engineering applications in high-tech industry, presenting the friction-vibration interaction principle and applications in data storage systems. - Covers a key topic in science and engineering, with applications in daily life - Introduces the principles of friction-vibration interactions - Analyzes, presents experiments, and treats real systems ranging from nano to micro to macro scales

Gang Sheng Chen is J. Robert Fletcher Associate Professor in college of Information Technology and Engineering, Marshall University, Huntington, WV, USA. His industry experience includes work in multinational corporations. The author of 80 journal papers, books and chapters, recipient of five patents and twelve industrial/academic/association awards, Gang Sheng is a Fellow of ASME and serves on the editorial boards of three international journals. He holds B.S. and M.S. degrees from Shanghai Jiao Tong University, China, and a Ph.D. from Nanyang Technological University, Singapore.

Chen Handbook of Friction-Vibration Interactions jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Cover
;1
2;Handbook of friction–vibration interactions;4
3;Copyright
;5
4;Dedication
;6
5;Table of contents;8
6;List of figures and tables
;10
6.1;Figures;10
6.2;Table;18
7;Preface;20
8;About the author;22
9;1:
Introduction;24
9.1;1.1 Contact, friction and vibration;25
9.2;1.2 Engineering signifi cance of friction–vibration interactions;26
9.3;1.3 Organization of the book;28
9.4;1.4 Bibliography;29
10;2:
Fundamentals of vibrations;32
10.1;2.1 Introduction;33
10.2;2.2 Linear vibrations under deterministic excitations;33
10.3;2.3 Random vibrations;57
10.4;2.4 Nonlinear vibrations;73
10.5;2.5 Bibliography;93
11;3:
Fundamentals of contact mechanics and friction;94
11.1;3.1 Introduction;94
11.2;3.2 Contact between two solid surfaces;95
11.3;3.3 Friction between two solid surfaces;105
11.4;3.4 References;161
12;4:
Friction–vibration interactions;176
12.1;4.1 Introduction;177
12.2;4.2 Friction–vibration interactions of singledegree-offreedom systems;182
12.3;4.3 Vibrations of multidegreeoffreedom systems with friction;237
12.4;4.4 Vibrations of continuum systems with friction;274
12.5;4.5 Applications in science and engineering;298
12.6;4.6 References;316
13;5:
Friction–vibration interactions and applications in computer hard disk drive system;330
13.1;5.1 Introduction;331
13.2;5.2 Contact/friction-induced vibrations of slider in hard disk drive;334
13.3;5.3 Acoustic emission due to contact/friction–vibration interactions;364
13.4;5.4 Identification of interface contact and friction dynamics using vibrational signal
;375
13.5;5.5 Disk surface screening and certification for mass production by using acoustic emission technique
;387
13.6;5.6 References;396
14;Index;406


List of figures and tables
Figures 2.1. Single-degree-of-freedom system 2.2. Linear multiple-degree-of-freedom system 2.3. Schematic of: (a) a string; and (b) the differential elements 2.4. Natural modes of a string 2.5. Displacement of element of a rod 2.6. Torsional vibration of long shaft 2.7. Transverse vibration of beam 2.8. Ensemble of sample functions forming a random process 2.9. Probability measurement 2.10. Probability density curve 2.11. Gaussian probability distribution 2.12. Autocorrelation measurement 2.13. Forcing function in the form of a series of impulses 2.14. Unit impulse excitation at t = t 2.15. Impulse response function 2.16. Probability density, autocorrelation and power spectral density functions for four sample time histories 2.17. Cross-section measurements 2.18. Schematic of a model of a quarter of a vehicle traveling over a rough road 2.19. Hardening and softening spring characteristics 2.20. Amplitude–frequency relations 2.21. Response curves: (a) ß = 0; (b) ß > 0; and (c) ß < 0) 2.22. Limit cycle for Rayleigh’s equation; the broken line is limit circle 2.23. Poincaré map of Eq. 2.260 2.24. Stability chart for Mathieu’s equation 3.1. Roughness in different scales 3.2. Contact of two spheres 3.3. Contact surfaces 3.4. Contact of sphere array with smooth surface 3.5. Rough surface 3.6. Potential energy of molecules 3.7. Liquid condensation in interface 3.8. A thin layer liquid working as an adhesive between two plates 3.9. Schematic of an isolated meniscus in the presence of a liquid film 3.10. Schematic of rough asperities on a disk in contact with slider surfaces: (a) short-term: toe-dipping regime; and (b) long-term: pillbox regime 3.11. The normal contact and the slope contact of asperities 3.12. Slip-line theory 3.13. Plowing of hard conical (a) and sphere asperity (b) against soft elastic substrates 3.14. Hysteresis of friction–velocity curve 3.15. Micro-slip of magnetic recording tape 3.16. Generalized Stribeck curve 3.17. Static friction force vs. CSS operation cycles for a new interface 3.18. Static friction force vs. CSS operation cycles for the conditioned interface 3.19. Measured static friction coefficient as a function of dwell time 3.20. Schematic of friction–velocity curves for three automatic transmission fluids 3.21. Dry and wet COF vs. velocity of a clutch interface 3.22. Dry and wet COF vs. velocity of a brake interface 3.23. Dry and wet COF vs. velocity of a brake interface for different environmental temperatures 3.24. Coefficient of friction vs. relative air humidity for two different brake pads 3.25. COF vs. slip velocity of tire under different road conditions 3.26. Friction force as a function of displacement 3.27. Schematic of a dynamical system consisting of sliding interface 3.28. Dimensionless friction stress as a function of dimensionless contact radius 3.29. Time and length scales of friction problems in different contexts 3.30. Schematic of Frenkel–Kontorova model used for molecular dynamics simulation 3.31. Snapshot of meniscus formation at different time steps 4.1. SDOF with sliding friction and external excitation 4.2. Typical stick-slip: (a) periodic stick-slip; and (b) chaos stick-slip 4.3. Stick-slip amplitude as a function of slip velocity for different connecting stiffness 4.4. Friction laws: I. µs = 0.4, µk = 0.25; II: µ(vr) = 0.3/(1 + 1.42|vr|) + 0.1 + 0.01v2r 4.5. Phase plots for stick-slip and self-excited vibrations of the friction oscillator 4.6. Forced vibrations of oscillator with friction law II: FN/k = 10, u0 = 8: (a) r = 0.75; (b) r = 0.5; (c) r = 0.25; and (d) r = 0.2 4.7. Bifurcation diagram of the oscillator with friction I: Fn/k = 10, u0 = 8 4.8. Phase portraits of oscillator with friction law II: (a) r = 0.9, FN/k = 10, u0 = 0.5; (b) r = 1.15, Fn/k = 10, u0 = 0.5; and (c) r = 1.915, FN/k = 10, u0 = 1 4.9. Bifurcation diagram of oscillators with friction laws I (a) and II (b), Fn/k = 10, u0 = 0.5 4.10. Bifurcation maps of oscillators with friction law I (a) and II (b), u0 = 0.5 4.11. Coefficient of friction vs. velocity curve 4.12. Amplitude (a) and frequency (b) of periodic motions as a function of excitation velocity 4.13. The displacement amplitude as function of excitation speed for different levels of relative friction difference, ? = (µs - µm)/vm, ? = 0.05, vm = 0.5, µs = 0.4 4.14. Schematic of the beam model for spragging 4.15. Time history records of normal (a) and friction (b) forces for disk speed of 3 rpm clockwise 4.16. Probability density function of the friction force: measured curve and Gaussian curve 4.17. Coefficient of friction–velocity curves for clockwise disc speed and counter-clockwise disk speed 4.18. Schematic of: (a) contact vibration model; and (b) asymmetric piecewise linear restoring force 4.19. Region of stability 4.20. Excitation ratio as the function of amplitude ratio and frequency ratio 4.21. Response amplitudes as the function of exciting frequency 4.22. Poincaré section: chaotic transition (k/kc = 0.005, ? = 0.05, ?/?n = 0.56) 4.23. Stability map for the linear oscillator with velocity-dependent friction and time-dependent normal force: (a) e = 0.001; and (b) e = 0.01 4.24. The phase portrait of a chaotic solution (r = 1.25, A = 1.9,...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.