Chen | Deep Learning and Practice with MindSpore | Buch | 978-981-16-2235-9 | sack.de

Buch, Englisch, 394 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 622 g

Reihe: Cognitive Intelligence and Robotics

Chen

Deep Learning and Practice with MindSpore

Buch, Englisch, 394 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 622 g

Reihe: Cognitive Intelligence and Robotics

ISBN: 978-981-16-2235-9
Verlag: Springer Nature Singapore


This book systematically introduces readers to the theory of deep learning and explores its practical applications based on the MindSpore AI computing framework. Divided into 14 chapters, the book covers deep learning, deep neural networks (DNNs), convolutional neural networks (CNNs), recurrent neural networks (RNNs), unsupervised learning, deep reinforcement learning, automated machine learning, device-cloud collaboration, deep learning visualization, and data preparation for deep learning. To help clarify the complex topics discussed, this book includes numerous examples and links to online resources.

Chen Deep Learning and Practice with MindSpore jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Chapter 1. Introduction.- Chapter 2. Deep Learning Basics.- Chapter 3. DNN.- Chapter 4. Training of DNNs.- Chapter 5. Convolutional Neural Network.- Chapter 6. RNN.- Chapter 7. Unsupervised Learning: Word Vector.- Chapter 8. Unsupervised Learning: Graph Vector.- Chapter 9. Unsupervised Learning: Deep Generative Model.- Chapter 10. Deep Reinforcement Learning.- Chapter 11. Automated Machine Learning.- Chapter 12. Device-Cloud Collaboration.- Chapter 13. Deep Learning Visualization.- Chapter 14. Data Preparation for Deep Learning.


Chen Lei is a Chair Professor of the Department of Computer Science and Engineering and the Director of the Big Data Institute at Hong Kong University of Science and Technology (HKUST). His research focuses on data-driven AI, human-powered machine learning, knowledge graphs, and data mining on social media. He has published more than 400 papers in world-renowned journals and conference proceedings and won the 2015 SIGMOD Test of Time Award. Currently, he serves as the Editor-in-Chief of the VLDB 2019 Journal, the Associate Editor-in-Chief of the IEEE TKDE Journal, and an executive member of the VLDB Endowment. He is also IEEE Fellow and ACM Distinguished Scientist.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.