E-Book, Englisch, 486 Seiten
Chen / Cao Micromechanism of Cleavage Fracture of Metals
1. Auflage 2014
ISBN: 978-0-12-801051-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
A Comprehensive Microphysical Model for Cleavage Cracking in Metals
E-Book, Englisch, 486 Seiten
ISBN: 978-0-12-801051-8
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
In this book the authors focus on the description of the physical nature of cleavage fracture to offer scientists, engineers and students a comprehensive physical model which vividly describes the cleavage microcracking processes operating on the local (microscopic) scale ahead of a defect. The descriptions of the critical event and the criteria for cleavage fracture will instruct readers in how to control the cleavage processes and optimize microstructure to improve fracture toughness of metallic materials. - Physical (mechanical) processes of cleavage fracture operating on the local (microscopic) scale, with the focus on the crack nucleation and crack propagation across the particle/grain and grain/grain boundaries - Critical event, i.e., the stage of greatest difficulty in forming the microcrack, which controls the cleavage fracture - Criteria triggering the cleavage microcracking with incorporation of the actions of macroscopic loading environment into the physical model - Effects of microstructure on the cleavage fracture, including the effects of grain size, second phase particles and boundary - Comprehensive description of the brittle fracture emerging in TiAl alloys and TiNi memory alloys
J. H. Chen is a professor in the Faculty of Materials Science and Engineering of Lanzhou University of Technology in China. From 1985 to 1995 he served as President of Gansu University of Technology (now Lanzhou University of Technology). From 2000 to 2003 he was President of the China Welding Society. Dr. Chen has devoted himself to the investigation of the micromechanism of cleavage fracture of metals for more than thirty years and published 70 papers on this subject in international journals.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Micromechanism of Cleavage Fracture of Metals: A Comprehensive Microphysical Model for Cleavage Cracking in Metals;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;Acknowledgments;16
7;Preface;18
7.1;The motivation that inspired the authors to write this book resides in the following issues;18
7.2;Notes About This Book;18
7.2.1;Core Parts and Content;18
7.2.2;Arrangement of the Text;19
7.2.3;Supplemental Knowledge;19
7.2.4;Style of Description;19
7.2.5;Necessary Repeating;19
7.3;Acknowledgments;20
7.4;References;20
8;Chapter 1. Introduction;22
8.1;1.1. Basic Concepts of Fracture;22
8.1.1;1.1.1. Fracture Modes Under Various Stress States;22
8.1.2;1.1.2. Cleavage Fracture;25
8.1.3;1.1.3. Micromechanism of Cleavage Fracture;27
8.2;1.2. Basic Theories Relevant to the Micromechanism of Cleavage Fracture;28
8.2.1;1.2.1. Griffith Crack Theory;28
8.2.2;1.2.2. Linear Elastic and Small-Scale Yielding Fracture Mechanics;31
8.2.3;1.2.3. Elastic-Plastic Fracture Mechanics;33
8.2.4;1.2.4. Concepts of Stress and Strain Concentrations, Stress Triaxiality, and Stress Intensification;35
8.2.4.1;1.2.4.1. Concept of stress and strain concentrations;35
8.2.4.2;1.2.4.2. Concept of stress triaxiality;37
8.2.4.3;1.2.4.3. Concept of stress intensification;39
8.2.5;1.2.5. Distributions of Stress and Strain Ahead of a Notch or a Precrack;42
8.3;1.3. A Review of the Micromechanism of Cleavage Fracture of Steel;47
8.3.1;1.3.1. Characteristics of Cleavage Fracture;48
8.3.2;1.3.2. Cleavage Cracking Processes;49
8.3.3;1.3.3. Cleavage Mechanisms and Criteria;54
8.3.3.1;1.3.3.1. Mechanisms and criteria of crack nucleation;54
8.3.3.2;1.3.3.2. Mechanisms and criteria of crack extension;56
8.3.3.3;1.3.3.3. Distance criterion;60
8.3.4;1.3.4. Critical Event for Cleavage Fracture;60
8.3.4.1;1.3.4.1. Definition of critical event of cleavage fracture;60
8.3.4.2;1.3.4.2. Critical event for cleavage fracture;60
8.3.4.3;1.3.4.3. Variation of the critical event;68
8.3.4.4;References;72
9;Chapter 2. Methodology;76
9.1;2.1. Materials;76
9.2;2.2. Global Mechanical Tests;76
9.2.1;2.2.1. Tensile Tests;76
9.2.2;2.2.2. Compression Tests;78
9.2.3;2.2.3. Four-Point Bending (4PB) Test of Notched Specimen;78
9.2.4;2.2.4. Charpy V Impact Test;79
9.2.5;2.2.5. Three-Point Bending (3PB) COD Test of Precracked Specimen;79
9.2.6;2.2.6. Loading-Unloading-Reloading Tests;80
9.2.7;2.2.7. Tests at Various Loading Rates;81
9.2.8;2.2.8. Fatigue Tensile Tests of TiAl Alloy;81
9.3;2.3. Microscopic Tests and Observations;81
9.3.1;2.3.1. In Situ Tensile Tests;81
9.3.2;2.3.2. Observations of the Metallographic Sections for Identifying the Crack Initiation Region and the Critical Event for ...;82
9.3.3;2.3.3. Observations of the Fracture Surfaces by the Scanning Electron Microscope;85
9.3.4;2.3.4. Measurement of the Microscopic Parameters on the Fracture Surface;87
9.3.5;2.3.5. Locating the Site of Cleavage Cracking Initiation and Measuring Its Distance from the Blunted Notch Root or the Prec ...;88
9.3.6;2.3.6. Observation on the Edge Formed by Intersection of the Fracture Surface and the Metallographic Section Cut Through th ...;89
9.3.7;2.3.7. Drawing the Map of Crack Propagation on the Fracture Surface;91
9.3.8;2.3.8. Identification of the Second-Phase Particle Initiating the Cleavage Cracking;94
9.3.9;2.3.9. Observation by Transmission Electron Microscope;94
9.3.10;2.3.10. Electron Back-Scattered Diffraction for Measuring the High-Angle Misorientation Boundary and Grain Size;94
9.4;2.4. Finite Element Method Calculations and Simulations;95
9.5;2.5. Measurement of Critical Values of Fracture Plastic Strain e pc, Local Cleavage Fracture Stress s f, and Cri ...;100
9.6;References;101
10;Chapter 3. Microphysical Processes of Cleavage Fracture of Steels;102
10.1;3.1. Essential Contents in the Micromechanism of Cleavage Fracture;102
10.1.1;3.1.1. Describing the Complete Cleavage Fracture Process;102
10.1.2;3.1.2. Identifying the Critical Event for the Cleavage Fracture Process;102
10.1.3;3.1.3. Incorporating the Distributions of the Local Stress and the Local Strain to Quantify the Driving Forces and the Resi ...;103
10.1.4;3.1.4. Establishing the Criteria for Triggering the Cleavage Fracture;103
10.1.5;3.1.5. Designating the Involved Microstructures, Their Interaction, and Their Role in the Cleavage Fracture Processes;104
10.1.6;3.1.6. Specifying the Physical Bases for the Statistical Approaches Dealing with the Cleavage Fracture;104
10.2;3.2. A General Description of Microscopic Cracking Processes in Cleavage Fracture;105
10.2.1;3.2.1. The Necessary Condition and the Sufficient Condition for Cleavage Fracture;105
10.2.2;3.2.2. A General Description of the Cleavage Microcracking Processes;106
10.2.2.1;3.2.2.1. Process preceding the crack nucleation;106
10.2.2.2;3.2.2.2. Processes of cleavage microcracking;110
10.3;3.3. Crack Nucleation;116
10.3.1;3.3.1. The Role of Crack Nucleation in the Microcracking Process;116
10.3.2;3.3.2. Mechanism of Crack Nucleation;117
10.3.3;3.3.3. Types of Microcrack Nucleation Entities Observed in Real Fractured Specimens;119
10.3.3.1;3.3.3.1. Carbide particles;120
10.3.3.2;3.3.3.2. Martensite-austenite constituent (M-A constituent, M-A island);123
10.3.3.3;3.3.3.3. Nonmetallic inclusion;128
10.3.3.4;3.3.3.4. Pearlite colony in ferrite steel;130
10.3.3.5;3.3.3.5. Carbide/ferrite aggregates formed by decomposed M-A island;133
10.3.3.6;3.3.3.6. Crack nucleated in ferrite or bainite matrix;134
10.3.3.7;3.3.3.7. A special case of crack initiation in notched specimens;135
10.3.4;3.3.4. The Criterion for the Crack Nucleation;136
10.4;3.4. Crack Propagation;136
10.4.1;3.4.1. Theoretical Bases;137
10.4.1.1;3.4.1.1. Smith’s theory;137
10.4.1.2;3.4.1.2. Rice and Johnson’s theory;139
10.4.1.3;3.4.1.3. Relevant theories of O’Dowd, Dodds, Ostby, and their colleagues;139
10.4.2;3.4.2. Three Modes (SUBREGIONS) of Cleavage Microcrack Propagation Appearing in the Lower Shelf Toughness-Transition Temper ...;140
10.4.3;3.4.3. Propagation of the Microcrack in the First Subregion IN the Lower Shelf Toughness-Transition Temperature Region (Low ...;142
10.4.4;3.4.4. Propagation of a Particle-Sized Crack into Matrix Grain in the Second Subregion IN the Lower Shelf Toughness-Transi ...;145
10.4.5;3.4.5. Propagation of a Particle-Sized Crack into Matrix Grain in the Third Subregion IN the Lower Shelf Toughness-Transiti ...;150
10.4.6;3.4.6. Mechanism of Accelerative Rise of Toughness in the Third Subregion IN the Lower Shelf Toughness-Transition Temperatu ...;154
10.4.7;3.4.7. Propagation of a Grain-Sized Crack into Contiguous Grains;155
10.4.8;3.4.8. Mechanism of Ductile to Brittle Fracture Transition;156
10.5;References;160
11;Chapter 4. Critical Event for Cleavage Fracture;162
11.1;4.1. Physical Meaning of the Critical Event for Cleavage Fracture;162
11.2;4.2. Methodology to Identify the Critical Event for Cleavage Fracture;164
11.2.1;4.2.1. Observation of Cracks Retained in Fractured or Unloaded Specimens;164
11.2.2;4.2.2. Observation of the Microstructure Surrounding Locations of Cleavage Initiation Sites;165
11.2.3;4.2.3. Relating the Global Toughness Parameters to Parameters Characterizing the Microstructural Feature;165
11.2.4;4.2.4. Identifying the Critical Event Based on the Location of Crack Initiation Relative to the Location of the Maximum Nor ...;166
11.2.5;4.2.5. Using the Griffith Formula to Identify the Relationship Between the Local Cleavage Fracture Stress s f and the ...;167
11.2.6;4.2.6. Observation of the Vicinity Around a Blunted Precrack Tip of an Unloaded Specimen;167
11.3;4.3. Critical Events for Cleavage Fracture;167
11.3.1;4.3.1. Crack Nucleation as the Critical Event with the Criterion e p = e pc ;168
11.3.2;4.3.2. Propagation of a Second-Phase Particle-Sized Crack Across the Particle/Grain Boundary into Contiguous Matrix Grain a ...;168
11.3.3;4.3.3. Propagation of a Grain-Sized Crack Across the Grain/Grain Boundary into Contiguous Grains as the Critical Event with ...;168
11.4;4.4. Variations in Critical Event;170
11.4.1;4.4.1. Variations of Critical Event in Response to Variations in Specimen Geometrics;171
11.4.1.1;4.4.1.1. Critical event of cleavage fracture in notched specimen is propagation of grain-sized crack across grain/grain bo ...;171
11.4.1.2;4.4.1.2. Critical event for cleavage fracture in precracked specimen is propagation of second-phase particle-sized crack i ...;175
11.4.1.3;4.4.1.3. Critical event for cleavage fracture changes from propagation of second-phase particle-sized crack into matrix gra ...;177
11.4.2;4.4.2. Variation of the Critical Event with Temperature;185
11.4.3;4.4.3. Variation of the Critical Event With Increasing Prestrain;185
11.4.4;4.4.4. Variation of the Critical Event with Increasing Loading Rate;190
11.4.5;4.4.5. Variation of the Critical Event With the Variation of the Local CLEAVAGE Fracture Stress s f ;195
11.4.6;4.4.6. Variations of the Critical Event for Different Microstructures;200
11.5;References;201
12;Chapter 5. Criteria for Cleavage Fracture;202
12.1;5.1. Physical Meaning of the Criteria for Cleavage Fracture;202
12.2;5.2. Distributions of Local Stress and Local Strain Ahead of a Precrack Tip;203
12.3;5.3. Three Criteria for Triggering Cleavage Fracture in Precracked Specimens;204
12.4;5.4. Two Critical Criteria for Triggering Cleavage Fracture in Notched Specimens;216
12.4.1;5.4.1. Stress and Strain Distribution in Front of a Notch Root;217
12.4.2;5.4.2. Identification of Two Criteria for Triggering Cleavage Fracture in Notched Specimens;218
12.5;5.5. Fracture Distance X f ;219
12.5.1;5.5.1. Physical Meaning of X f and Its Identification;219
12.5.2;5.5.2. Minimum Fracture Distance for Triggering Cleavage Fracture;221
12.5.3;5.5.3. Variations in Fracture Distance X f ;225
12.5.4;5.5.4. Measured Values of X f ;226
12.6;5.6. Local Cleavage Fracture Stress s f ;227
12.6.1;5.6.1. The Physical Meaning of s f ;227
12.6.2;5.6.2. The Normal Stress s yyt ;229
12.6.3;5.6.3. Measurements of s f ;230
12.6.4;5.6.4. The Stability of Measured s f Values;230
12.6.5;5.6.5. Factors Affecting the Values of s f ;246
12.6.5.1;5.6.5.1. Grain size;246
12.6.5.2;5.6.5.2. Critical event;246
12.6.5.3;5.6.5.3. Carbon content;250
12.6.6;5.6.6. Data of Measured Values of s f ;255
12.7;5.7. Fracture Plastic Strain e pc ;255
12.7.1;5.7.1. Physical Meaning of e pc ;255
12.7.2;5.7.2. Factors Affecting the Values of e pc ;256
12.7.3;5.7.3. Measured Values of e pc ;256
12.8;5.8. Critical Stress Triaxiality T c ;257
12.8.1;5.8.1. Physical Meaning of T c ;257
12.8.2;5.8.2. Measured Values of T c ;257
12.9;5.9. Effective Surface Energy . p ;258
12.9.1;5.9.1. Physical Meaning of . p ;258
12.9.2;5.9.2. Measured Values of . p ;258
12.10;References;259
13;Chapter 6. Effects of Material Microstructure on Cleavage Fracture;262
13.1;6.1. Effects of Grain Size;263
13.1.1;6.1.1. Determining the Critical Stress Intensification Factor Q c = s f / s y ;263
13.1.2;6.1.2. Defining the Critical Event for Cleavage Fracture;264
13.2;6.2. Effects of Boundary;264
13.3;6.3. Effects of Second-Phase Particle;268
13.4;6.4. Synthetic Effects of Grain Size and Second-Phase Particle;270
13.4.1;6.4.1. Effects on the Critical Event;271
13.4.2;6.4.2. Effects on the Fracture Distances;278
13.5;6.5. Effects of Microstructural Phases on Cleavage Fracture of HSLA Steels;279
13.5.1;6.5.1. Quenched Microstructural Phase;279
13.5.2;6.5.2. Quenched-Tempered Microstructural Phase;280
13.5.3;6.5.3. Normalized Microstructural Phase;280
13.5.4;6.5.4. Bainitic Microstructural Phase;287
13.6;References;291
14;Chapter 7. Global Fracture Toughness Related to the Micromechanism of Cleavage Fracture;292
14.1;7.1. Physical Meaning of Parameters Characterizing the Global Fracture Toughness Viewed from the Micromechanism of Cleavage ...;292
14.2;7.2. The Global Fracture Mechanism and Improvement of the Fracture Toughness of HSLA Steels;293
14.2.1;7.2.1. The Fracture Mechanism and Improvement of Toughness in the Upper Shelf Toughness-Transition Temperature Region;294
14.2.2;7.2.2. The Fracture Mechanism and Improvement of Toughness in the Lower Shelf Toughness-Transition Temperature Region;295
14.2.3;7.2.3. The Fracture Mechanism and Improvement of Toughness in the Transition Temperature Region;295
14.3;7.3. Relationships Between the Scatter of Global Toughness and the Scatter of Critical Values of Microscopic Parameters X ...;297
14.3.1;7.3.1. Relationship Between K I C and Factor F = X f 1/2 { s f (1 + n)/2 n / s y (1 - n)/ 2n};298
14.3.2;7.3.2. Effects of Scatter of s f on Scatter of Global Toughness;301
14.3.3;7.3.3. Effects of Scatter of X f on Scatter of Global Toughness;302
14.3.4;7.3.4. Effects of Scatter of e pc on Scatter of Global Toughness;304
14.3.5;7.3.5. Inference;306
14.3.6;7.3.6. Effects of Scatter of X f in Notched Specimens;306
14.4;7.4. Jump in Fracture Toughness Caused by a Slight Variation of Temperature, Grain Sizes, Loading Rate, and Prestrain;307
14.5;7.5. Statistical Model Using Microscopic Parameters to Predict the Global Failure Probability;309
14.5.1;7.5.1. Introduction;309
14.5.2;7.5.2. Experimental;310
14.5.2.1;7.5.2.1. Basic data;310
14.5.2.2;7.5.2.2. Observations of fracture and metallographic surfaces and measurement of critical values of micro-parameters;311
14.5.3;7.5.3. Experimental Results;311
14.5.3.1;7.5.3.1. Tensile test results;311
14.5.3.2;7.5.3.2. Observation results;311
14.5.3.3;7.5.3.3. Statistical distribution of measured parameters;312
14.5.4;7.5.4. Statistical Model Using Micro-Parameters to Predict the Global Failure Probability;313
14.5.4.1;7.5.4.1. Basic presumption;314
14.5.4.2;7.5.4.2. Specification of the active zone;316
14.5.4.3;7.5.4.3. Comments: the feature and inadequacy of this statistical model;320
14.6;7.6. Distinguishing Feature of the Present Microphysical Model (Micromechanism) of Cleavage Fracture;322
14.6.1;7.6.1. The Microcracking Process of Cleavage Fracture in HSLA Steels;322
14.6.2;7.6.2. Critical Events for Cleavage Fracture and Their Variability;322
14.6.3;7.6.3. Three Criteria for Cleavage Fracture;323
14.6.4;7.6.4. The Stability Of Local Cleavage Fracture Stress s f ;324
14.6.5;7.6.5. Scatter in Measured Values of Fracture Toughness;324
14.6.6;7.6.6. The Effects of the Grain Size;324
14.7;References;325
15;Chapter 8. Special Case Studies;328
15.1;8.1. Pop-In Phenomenon;328
15.2;8.2. Effect of Warm Prestressing (WPS);330
15.2.1;8.2.1. Experimental and Finite Element Method (FEM) Calculation;331
15.2.2;8.2.2. Effect of Prestressing Load on the Apparent Toughness in Precracked Specimens;333
15.2.2.1;8.2.2.1. Experimental results for precracked specimen;333
15.2.2.2;8.2.2.2. Effect of crack-tip blunting in precracked COD specimens;333
15.2.2.3;8.2.2.3. Effect of residual compressive stress in precracked COD specimens;336
15.2.2.4;8.2.2.4. Effect of LCF cycle in precracked COD specimens;337
15.2.3;8.2.3. Effect of Prestressing Load on the Apparent Toughness in Notched Specimens;338
15.2.3.1;8.2.3.1. Experimental results for notched specimen;338
15.2.3.2;8.2.3.2. Effect of residual compressive stress in notched 4PB specimens;339
15.2.3.3;8.2.3.3. Effect of blunting of original notch in notched 4PB specimens;341
15.2.3.4;8.2.3.4. Effect of stress triaxiality s m / s e in notched 4PB specimens;343
15.2.3.5;8.2.3.5. Effect of the prestrain on deactivating cleavage initiation;344
15.3;8.3. Fracture of Multilayer Weldment;346
15.3.1;8.3.1. Experiments;347
15.3.2;8.3.2. Nucleation of Crack;347
15.3.3;8.3.3. Region of Crack Initiation AND THE SCATTER OF MEASURED TOUGHNESS;347
15.3.4;8.3.4. Critical Event;354
15.3.5;8.3.5. Effect of the Weakest Region on the Toughness of Whole Welded Joint;355
15.3.6;8.3.6. Effect of Alloying Elements;358
15.3.7;8.3.7. Abnormal High-Impact Toughness Measured in CGHAZ of a High-Strength Steel Welded Joint;360
15.3.7.1;8.3.7.1. Comparison of properties measured in specimens CG and FG;361
15.3.7.2;8.3.7.2. Different micromechanisms of rupture for specimens CG and FG;363
15.3.7.3;8.3.7.3. Effect of stress triaxiality;365
15.3.8;8.3.8. Microstructural Features Determining the Toughness of Bainitic Base Metal and Weld Metal;368
15.3.8.1;8.3.8.1. Microstructure;368
15.3.8.2;8.3.8.2. Grain size;368
15.3.8.3;8.3.8.3. Bainitic packet sizes;368
15.3.8.4;8.3.8.4. High-degree misorientation boundaries;368
15.3.8.5;8.3.8.5. Critical event;368
15.3.8.6;8.3.8.6. Critical micro-parameters;369
15.3.8.7;8.3.8.7. Decisive microstructural features;369
15.3.8.8;8.3.8.8. Effects of nickel addition;376
15.4;8.4. Mechanism of Inverse Dependences of COD and Charpy V Toughness on Austenitizing Temperature;377
15.5;References;383
16;Chapter 9. brittle fracture of tial alloys and niti memory alloys;386
16.1;9.1. Experiments for TiAl Alloys;386
16.1.1;9.1.1. Materials;386
16.1.2;9.1.2. Mechanical Tests and Specimens;387
16.1.3;9.1.3. In Situ Tensile Tests;387
16.1.4;9.1.4. Observations of Metallographic Sections;387
16.1.5;9.1.5. Fracture Surface Observations for Building Fracture Maps;389
16.1.6;9.1.6. Fracture Surface Observations for Distinguishing Different Types of Fracture Facets;393
16.1.7;9.1.7. Observations of the Dislocations;393
16.1.8;9.1.8. FEM Calculations;393
16.2;9.2. Microcracking Processes: Nucleation and Propagation of Microcracks in TiAl Alloy;395
16.2.1;9.2.1. Observations of Initiation and Propagation Processes of Microcracks;395
16.2.2;9.2.2. Mechanisms of MicroCrack Initiation and Propagation;400
16.2.2.1;9.2.2.1. Crack initiation;400
16.2.2.2;9.2.2.2. Crack propagation;403
16.2.2.3;9.2.2.3. Estimation of stress of crack initiation and extension in TiAl alloys;405
16.2.2.4;9.2.2.4. Environment for crack initiation;406
16.2.2.5;9.2.2.5. Driving force for microcracking;408
16.3;9.3. Mechanisms of Global Fracture of Specimens of TiAl Alloys;409
16.3.1;9.3.1. Critical Crack-Triggered Fracture;410
16.3.1.1;9.3.1.1. Tensile test;410
16.3.1.2;9.3.1.2. Three-point bending (3PB) test;413
16.3.1.3;9.3.1.3. Tensile fatigue test;414
16.3.1.4;9.3.1.4. Effects of growing direction of lamellae on the cracking mode of TiAl alloy: a special case study;414
16.3.2;9.3.2. Damage Accumulation-Induced Fracture;419
16.4;9.4. Mechanism of Toughening of TiAl Alloy;419
16.4.1;9.4.1. Reason of the Increase of Applied Load with Extending Crack Length;419
16.4.2;9.4.2. The Main Toughening Micromechanisms;426
16.4.3;9.4.3. Mechanisms of Inverse Dependences of Tensile Strength and Notch Toughness on Grain Sizes;432
16.5;9.5. Effects of Damage on the Global Fracture of TiAl Alloys;433
16.5.1;9.5.1. The Volumetric Effects of the Damage;434
16.5.1.1;9.5.1.1. Decreasing the apparent elastic modulus;435
16.5.1.2;9.5.1.2. Making a stress-descendent sector in the load-displacement curve just before final fracture;438
16.5.2;9.5.2. The Facial Effects of the Damage;438
16.5.3;9.5.3. Effects of Loading Rate on the Microcrack Damage;440
16.6;9.6. Compression Fracture Mechanism of TiAl Alloys;443
16.6.1;9.6.1. Difference Between Tensile Properties and Compression Properties;443
16.6.2;9.6.2. Crack Initiation and Propagation Behaviors in Compression;444
16.6.3;9.6.3. Effects of Crack Damage on the Compression Fracture Behavior and Tensile Fracture Behavior;447
16.6.4;9.6.4. Fracture Mechanisms of Compression Specimens;450
16.7;9.7. Micromechanism of Brittle Fracture of the Shape Memory Alloy NiTi;453
16.7.1;9.7.1. Experimental;455
16.7.2;9.7.2. Micromechanism of Fracture Observed in In Situ Tensile Tests in SEM;457
16.7.3;9.7.3. Fracture Surfaces Observation;462
16.8;References;463
17;Nomenclature;466
18;Index;470
References
Argon AS, Im J, Safuglu R. Cavity formation from inclusions in ductile fracture. Metallurgical Transactions A. 1975;6A:825–837. Bates RC. Micromechanical modeling for prediction of lower shelf, transition region, and upper shelf fracture properties. In: Nair SV, Tien JK, Bates RC, Buck O, eds. Fracture mechanics: Microstructure and micromechanics. Metal Park, Ohio: American Society for Metals International; 1987:131–168. Bose Filho WW, Carvalho ALM, Bowen P. Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds, Part I: Quantification of local fracture behaviour observed in notched test pieces. Materials Science and Engineering A. 2007a;115:1–17. Bose Filho WW, Carvalho ALM, Bowen P. Micromechanisms of cleavage fracture initiation from inclusions in ferritic welds, Part II: Quantification of local fracture behaviour observed in fatigue precracked testpieces. Materials Science and Engineering A. 2007b;96:96–116. Bowen D, Knott JF. Cleavage fracture of A533B pressure vessel steel in martensitic condition. Metal Science. 1987;18:225–235. Brozzo P, Buzzichelli G, Mascanzoni A, Mirabile M. Microstructure and cleavage resistance of low-carbon bainitic steels. Metal Science. 1977;11:123–129. Brozzo P, Capurro M, Stagno E. Interpretation of cleavage resistance of modern high strength structural steels. Materials Science and Technology. 1994;10:334–339. Chan KS, Irwin GR. In: Cleavage fracture: George R. Irwin symposium: Proceedings of a symposium held at the 1997 TMS fall meeting Indianapolis, Indiana, September 15-17; 1997. Chen JC. Failure analysis of metal components. Press of Chengdu University of Science and Technology. 1987;11:12–14 (in Chinese). Chen JH, Kikuta Y, Araki T, Yoneda M, Matsuda Y. Micro-fracture behaviour induced by M-A constituent (island martensite) in simulated welding heat affected zone of HT80 high strength low alloyed steel. Acta Metallurgica. 1984;32:1779–1788. Chen JH, Yan C. A comparison of toughness of C-Mn steel with different grain sizes. Metallurgical and Materials Transactions A. 1992;23:2549–2556. Cox TB, Low Jr. JR. An investigation of plastic fracture of AISI 4340 and 18 nickel-200 grade maraging steel. Metallurgical Transactions. 1974;15:1457–1470. Curry DA. Cleavage micromechanisms of crack extension in steels. Metal Science. 1980;14:319–326. Curry DA, Knott JF. Effects of microstructure on cleavage fracture stress in steel. Metal Science. 1978;12:511–514. Di Schino A, Izquierdo A, Anelli E. Effect of chemical composition on hardenability and response to tempering of high strength low-c steels. Proceedings of the international conference on new development and application of high strength steel, Buenos, Aires. 2008;583–596. Di Schino A, Guarnaschelli C. Effect of microstructure on cleavage resistance of high-strength quenched and tempered steels. Materials Letters. 2009;63:1968–1972. Dzioba I, Gajewski M, Neimitz A. Study of fracture processes in Cr-Mo-V ferrite steel with various types of microstructure. International Journal of Pressure Vessels and Piping. 2010;87:575–586. Echeverria A, Rodrigues-Ibabe JM. The role of grain size in brittle particle induced fracture of steels. Materials Science and Engineering A. 2003;346:149–158. Gibson GP, Capel M, Druce SG. Effect of heat treatment on the fracture toughness transition properties of an A508 class 3 steel. In: Blauel JG, Schwalbe KH, eds. Defect assessment in components: Fundamentals and applications, ESIS/EGF9. London: Mechanical Engineering Publications; 1991:597–611. Griffith AA. The theory of rupture. In: Proceedings of the first international congress on applied mechanics, Delft; 1920:55–63. Griffiths JR, Owen DR. An elastic-plastic stress analysis for a notched bar in plane strain bending. Journal of the Mechanics and Physics of Solids. 1971;19:419–431. Hahn GT. The influence of microstructure on brittle fracture toughness. Metallurgical and Materials Transactions A. 1984;15:31–43. Hancock JW, Cowling MJ. Role of state of stress in crack-tip failure processes. Metal Science. 1980;14:293–304. Hill R. In: The mathematical theory of plasticity. The Oxford engineering science series. London: Clarendon Press; 1956:pp. 245. Hutchinson JW. Plastic stress and strain field at a crack tip. Journal of the Mechanics and Physics of Solids. 1968;16:13–31. Im YR, Lee BJ, Oh YJ, Hong JH, Lee HC. Effect of microstructure on the cleavage fracture strength of low carbon Mn–Ni–Mo bainitic steels. Journal of Nuclear Materials. 2004;324:33–40. Inglis CE. Stresses in a plate due to the presence of cracks and sharp corners. Transactions of the Institute of Naval Architects. 1913;55:219–242. Irwin GR. Fracture dynamics. In: Fracturing of materials. ASM (American Society Metals) symposium; Cleveland American Society Metals; 1948:126–147. Irwin GR. Analyses of stress and strain near the end of a crack traversing a plate. Journal of Applied Mechanics, Transactions of The American Society of Mechanical Engineers. 1957;24:364–381. Irwin GR, Zhang XJ. Cleavage behavior in structural steels. International Journal of Solids and Structures. 1995;32:2447–2456. Jang JI, Ju JB, Lee BW, Dongil K, Kim WS. Effects of microstructural change on fracture characteristics in coarse-grained heat-affected zones of QLT-processed 9% Ni steel. Materials Science and Engineering A. 2003;340:668–679. Knott JF. Some effects of hydrostatic tension on the fracture behaviour of mild steel. Journal of Iron and Steel Research International. 1966;204:104–111. Knott JF. Fundamental of fracture mechanics. London: The Butterworth Group; 1973 (pp. 150-175) Elsevier. Knott JF. Micro-mechanism of fracture and the fracture toughness of engineering alloys. In: Proceedings of the fourth international conference on fracture (ICF4), Waterloo, Canada (Vol. 1); 1977:61–92. Knott JF. Local approach concepts and the microstructures of steels. Engineering Fracture Mechanics. 2008;75:3560–3569. Lambert A, Drillet J, Gaurgues AF, Sturel T, Pineau A. Microstructure of martensite austenite constituents in heat affected zones of strength low alloy steel welds in relation to toughness properties. Science and Technology of Welding and Joining. 2000;5:168–173. Lambert-Perlade A, Gaurgues AF, Besson J, Sturel T, Pineau A. Mechanisms and modeling of cleavage fracture in simulated heat-affected zone microstructures of high-strength low alloy steel. Metallurgical and Materials Transactions A. 2004;35:1039–1053. Lin T, Evans AG, Ritchie RO. Stochastic modeling of the independent roles of particle size and grain in transgranular cleavage fracture. Metallurgical and Materials Transactions A. 1987;18:641–651. Low Jr. JR. The relation of microstructure to brittle fracture. In: Proceeding of symposium on relation of properties to microstructure; ASM; 1954:163–179. Margolin BZ, Shevetsova VA, Karzof G. Brittle fracture of nuclear pressure vessel steels—I. Local criterion for cleavage fracture. International Journal of Pressure Vessels and Piping. 1997;72:73–87. Martin-Meizoso A, Ocana-Arizcorreta I, Gil-Sevillano J, Fuentes-Perez M. Modelling cleavage fracture of bainitic steels. Acta Metallurgica et Materialia. 1994;42:2057–2068. McMahon CJ, Cohen M. Initiation of cleavage in polycrystalline iron. Acta Metallurgica. 1965;13:591–605. McMeeking RM. Finite deformation analysis of crack-tip opening in elastic-plastic materials and implications for fracture. Journal of the Mechanics and Physics of Solids. 1977;25:357–381. Milne I, Ritchie R, Karihaloo B. Comprehensive structural integrity. Holland: Elsevier Science; 2007. Neimitz A, Gajewski M, Dzioba I. The ductile-to-cleavage transition in ferritic Cr-Mo-V steel: A detailed microscopic and numerical analysis. Engineering Fracture Mechanics. 2010;77:2504–2526. Oates G, Griffiths JM. Mechanism of cleavage-fracture initiation in notched and smooth specimens of 3% silicon iron. Metal Science. 1969;3:111–115. Okumura N. Cleavage fracture of low carbon ferritic steels with fine grain size. Metal Science. 1983;17:581–589. Orowan E. Fracture and strength of solids. Report on Progress in Physics. 1949;12:185–232 London. Orowan E. Fracture and strength of solids. In: London: Physical Society; 185–232. Progress in physics. 1984;Vol. V-XII. Petch NJ....