E-Book, Englisch, 391 Seiten, eBook
Chemical Innovation Computer Simulation of Polymeric Materials
1. Auflage 2016
ISBN: 978-981-10-0815-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Applications of the OCTA System
E-Book, Englisch, 391 Seiten, eBook
ISBN: 978-981-10-0815-3
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book is the first to introduce a mesoscale polymer simulation system called OCTA. With its name derived from 'Open Computational Tool for Advanced material technology,' OCTA is a unique software product, available without charge, that was developed in a project funded by Japanese government. OCTA contains a series of simulation programs focused on mesoscale simulation of the soft matter COGNAC, SUSHI, PASTA, NAPLES, MUFFIN, and KAPSEL. When mesoscale polymer simulation is performed, one may encounter many difficulties that this book will help to overcome. The book not only introduces the theoretical background and functions of each simulation engine, it also provides many examples of the practical applications of the OCTA system. Those examples include predicting mechanical properties of plastic and rubber, morphology formation of polymer blends and composites, the micelle structure of surfactants, and optical properties of polymer films. This volume is strongly recommended as a valuable resource for both academic and industrial researchers who work in polymer simulation.
The Japan Association for Chemical Innovation (JACI), a public interest incorporated association, is composed of members from the chemical industry, user industries, academia, and leading national research institutions in Japan. This public interest corporation carries out activities with the aim of promoting various projects with highly public nature concerning chemical technology innovation.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;Part I Introduction of Computer Simulation of Polymeric Materials;10
3.1;1 Expected Target of Polymer Simulation;11
3.2;2 Coarse-Grained Simulation;13
3.2.1;2.1 Coarse-Graining of Polymers;13
3.2.2;2.2 Examples of Coarse-Grained Molecular Models;14
3.2.2.1;2.2.1 United Atom Model;14
3.2.2.2;2.2.2 Rigid-Body Model;15
3.2.2.3;2.2.3 Bead–Spring Model;16
3.2.2.4;2.2.4 Ideal Chain Model;17
3.2.2.5;2.2.5 Slip-Link Model;17
3.2.3;2.3 Relation Between Coarse-Grained Models and Real Polymer Chains;18
3.2.3.1;2.3.1 Coarse-Graining from Chemical Structures;18
3.2.3.2;2.3.2 Mapping Using the Scaling Concept;19
3.2.4;References;20
4;Part II OCTA: Mesoscale Polymer Simulation System;21
4.1;3 Overview of OCTA;22
4.1.1;3.1 What is OCTA?;22
4.1.2;3.2 UDF File and Python;25
4.1.3;3.3 Action Mechanism;28
4.1.4;3.4 Unit Conversion;29
4.1.5;3.5 3D Graphics and the Select Mechanism;30
4.1.6;3.6 Record and Animation;32
4.1.7;3.7 Closing Remarks;34
4.2;4 COGNAC: Coarse-Grained Molecular Dynamics Simulator;35
4.2.1;4.1 What Is COGNAC?;35
4.2.2;4.2 Potential Functions;35
4.2.2.1;4.2.1 Bond-Stretching Potential Functions;36
4.2.2.2;4.2.2 Angle Bending Potential Functions;37
4.2.2.3;4.2.3 Torsion Potential Functions;37
4.2.2.4;4.2.4 Nonbonding Potential Functions;37
4.2.2.5;4.2.5 External Potential Functions;38
4.2.2.6;4.2.6 Electrostatic Interaction;38
4.2.3;4.3 Equations of Motion;38
4.2.4;4.4 Ensembles;39
4.2.4.1;4.4.1 Temperature Control;39
4.2.4.2;4.4.2 Pressure/Stress Control;40
4.2.5;4.5 Boundary Conditions;40
4.2.6;4.6 Generation of Initial Coordinates;41
4.2.7;4.7 SILK;42
4.2.8;4.8 Extended Functions to Study Polymeric Materials;42
4.2.8.1;4.8.1 Deformation;42
4.2.8.2;4.8.2 Bond Formation and Breakage;43
4.2.8.3;4.8.3 Zooming;44
4.2.8.4;4.8.4 Data Conversion;45
4.2.9;4.9 Output Information;46
4.2.10;4.10 Analysis of Results;46
4.2.11;4.11 Total Flow of COGNAC Execution;50
4.2.11.1;4.11.1 Step 1: Generation of a COGNAC Input UDF File;51
4.2.11.2;4.11.2 Step 2: Editing of Simulation Conditions;52
4.2.11.3;4.11.3 Step 3: Execution of COGNAC;52
4.2.11.4;4.11.4 Step 4: Visualization and Analysis;53
4.2.12;4.12 Example: Study of the Molecular Shape and Size of a Polymer;53
4.2.12.1;4.12.1 Step 1: Generation of COGNAC Input UDF File Using Action SILK;53
4.2.12.2;4.12.2 Step 1': Generation of a COGNAC Input UDF File Using SILK Script;57
4.2.12.3;4.12.3 Step 2: Editing of Simulation Conditions;58
4.2.12.4;4.12.4 Step 3: Execution of COGNAC;62
4.2.12.5;4.12.5 Step 4: Visualization and Analysis of the Simulation Results;63
4.2.12.5.1;Visualization of Molecular Structure;63
4.2.12.5.2;Calculation of and ;63
4.2.12.5.3;Pair Distribution Function;66
4.2.12.5.4;Autocorrelation Function of Normal Coordinates;68
4.2.13;4.13 Download Instruction;70
4.2.14;References;70
4.3;5 SUSHI: Density Functional Theory Simulator;72
4.3.1;5.1 Introduction;72
4.3.2;5.2 Overview of DFT for Polymer Blends;73
4.3.3;5.3 Flory–Huggins Free Energy Model;74
4.3.4;5.4 Phenomenological Flory–Huggins Free Energy Model;74
4.3.5;5.5 Gaussian Chain Model;76
4.3.6;5.6 Linear SCF Theory with RPA;78
4.3.6.1;5.6.1 Application of the RPA to a Polymer Blend;79
4.3.7;5.7 Ginzburg–Landau Theory;79
4.3.8;5.8 Flory–Huggins–de Gennes Model;80
4.3.9;5.9 Combination of Ginzburg–Landau Theory and the RPA;81
4.3.10;5.10 SCF Theory;81
4.3.10.1;5.10.1 Path Integral;82
4.3.10.2;5.10.2 Calculation of Segment Density;83
4.3.10.2.1;Canonical Ensemble;83
4.3.10.2.2;Grand Canonical Ensemble;84
4.3.10.3;5.10.3 Free Energy;84
4.3.10.4;5.10.4 Practical Method of Calculating the Path Integral;84
4.3.10.5;5.10.5 SCF Calculation;85
4.3.11;5.11 Hydrodynamics Effect;86
4.3.11.1;5.11.1 Coupling with the Navier–Stokes Equation;86
4.3.12;5.12 Example: Phase Diagram Generated with the Flory–Huggins Free Energy Model;87
4.3.12.1;5.12.1 Critical Point;88
4.3.12.2;5.12.2 Spinodal Points;88
4.3.12.3;5.12.3 Binodal Points;89
4.3.12.4;5.12.4 Tool for the Flory–Huggins Phase Diagram;90
4.3.13;5.13 Example: Estimation of the Critical Point of Spinodal Decomposition of a Diblock Copolymer;91
4.3.14;5.14 Example: Estimation of ? Parameters;93
4.3.15;5.15 Example: Macrophase Separation and Microphase Separation;96
4.3.15.1;5.15.1 Macrophase Separation (Static SCF Calculation);96
4.3.15.2;5.15.2 Microphase Separation (Dynamic SCF Method);98
4.3.16;5.16 Example: Microphase Separated Structures of Diblock Copolymers;100
4.3.16.1;5.16.1 Lamellar Structure;101
4.3.16.2;5.16.2 Cylinder Structure;101
4.3.16.3;5.16.3 BCC Sphere Structure;101
4.3.16.4;5.16.4 Gyroid Structure;102
4.3.16.5;5.16.5 Fddd Structure;102
4.3.16.6;5.16.6 Phase Diagram of Microphase Separation of Diblock Copolymers Generated by SUSHI;102
4.3.17;5.17 Conclusion;103
4.3.18;5.18 Download Instruction;104
4.3.19;References;104
4.4;6 PASTA and NAPLES: Rheology Simulator;106
4.4.1;6.1 Introduction;106
4.4.2;6.2 Model;108
4.4.2.1;6.2.1 Slip-Link Model;108
4.4.2.2;6.2.2 Slip-Link Model for PASTA;109
4.4.2.3;6.2.3 Slip-Link Model for NAPLES;111
4.4.2.4;6.2.4 Stress Tensor;112
4.4.3;6.3 Model Parameters;113
4.4.3.1;6.3.1 Overview;113
4.4.3.2;6.3.2 Molecular Weight;113
4.4.3.3;6.3.3 Unit Modulus;114
4.4.3.4;6.3.4 Unit Time;116
4.4.4;6.4 Example 1: Calculation of Linear Viscoelasticity and Determination of Unit Time;117
4.4.4.1;6.4.1 Overview;117
4.4.4.2;6.4.2 Input UDF File for PASTA;117
4.4.4.3;6.4.3 Running PASTA;119
4.4.4.4;6.4.4 Analysis of the Output UDF File for PASTA;121
4.4.4.5;6.4.5 Input UDF File for NAPLES;124
4.4.4.6;6.4.6 Running NAPLES;126
4.4.4.7;6.4.7 Analysis of the Output File for NAPLES;127
4.4.5;6.5 Example 2: Calculation of Nonlinear Viscoelasticity Under Fast Flow;128
4.4.5.1;6.5.1 Overview;128
4.4.5.2;6.5.2 Input UDF file;129
4.4.5.3;6.5.3 NAPLES Simulation;129
4.4.5.4;6.5.4 Data Processing;130
4.4.6;6.6 Download Instruction;131
4.4.7;References;131
4.5;7 MUFFIN: Multiphase Simulator;133
4.5.1;7.1 Introduction;133
4.5.1.1;7.1.1 Multi-fluid Phase Dynamics Simulator;134
4.5.1.2;7.1.2 Electrolyte Fluid Dynamics Simulator;135
4.5.1.3;7.1.3 Micro Electrochemical Fluidics Chip Simulator;135
4.5.1.4;7.1.4 Multiphase Elasticity Simulator;136
4.5.1.5;7.1.5 Gel Dynamics Simulator;136
4.5.1.6;7.1.6 Light Transmittance Simulator;138
4.5.1.7;7.1.7 Mesh Generator;138
4.5.2;7.2 Theoretical Background;139
4.5.2.1;7.2.1 Multi-fluid Phase Dynamics Simulator;139
4.5.2.2;7.2.2 Multiphase Elasticity Simulator;140
4.5.3;7.3 Tutorial;142
4.5.3.1;7.3.1 Multi-fluid Phase Dynamics Simulator;142
4.5.3.2;7.3.2 Multiphase Elasticity Simulator;144
4.5.4;Appendix;151
4.5.5;References;151
4.6;8 KAPSEL: Colloidal Dispersion Simulator;152
4.6.1;8.1 What Is KAPSEL?;152
4.6.2;8.2 KAPSEL Installation and Basic Operations;154
4.6.2.1;8.2.1 OCTA Installation;154
4.6.2.2;8.2.2 KAPSEL Installation;155
4.6.2.3;8.2.3 Analysis with GOURMET;156
4.6.2.4;8.2.4 Analysis Without GOURMET;156
4.6.2.5;8.2.5 Sample Simulations;158
4.6.3;8.3 Dynamics of Particle Dispersions;160
4.6.3.1;8.3.1 Basic Equations;160
4.6.3.2;8.3.2 A Note on the Units;162
4.6.3.3;8.3.3 Particle Types;162
4.6.3.4;8.3.4 Input UDF File;163
4.6.4;8.4 Electrophoresis of Charged Colloidal Particles;165
4.6.4.1;8.4.1 Basic Equations;165
4.6.4.2;8.4.2 Electric Double-Layer Properties;167
4.6.4.3;8.4.3 UDF Description;169
4.6.5;References;170
5;Part III Examples of the Application of OCTA;171
5.1;9 Melt Viscoelasticity;172
5.1.1;9.1 Introduction;172
5.1.2;9.2 Calculation Model;173
5.1.3;9.3 Calculation of Stress Relaxation by COGNAC;173
5.1.4;9.4 Creation of the Initial Structure;174
5.1.5;9.5 Start of Simulation;174
5.1.6;9.6 Output and Plotting of Simulation Results;174
5.1.7;9.7 Analysis of Simulation Results;175
5.1.8;9.8 Concluding Remarks;178
5.1.9;9.9 Download Instruction;178
5.1.10;References;178
5.2;10 Crystallization of Polymers;179
5.2.1;10.1 Introduction;179
5.2.2;10.2 Molecular Models and Simulation Conditions;180
5.2.3;10.3 Results of Simulations;181
5.2.3.1;10.3.1 Chain-Folded Crystallization of a Single Molecule;181
5.2.3.2;10.3.2 Crystallization from a Highly Stretched Melt;184
5.2.3.3;10.3.3 Crystal Growth of the Chain-Folded Lamellae;186
5.2.4;10.4 Conclusions and Comments;188
5.2.5;10.5 Download Instruction;188
5.2.6;References;188
5.3;11 Polymer Blends: Bulk Property;189
5.3.1;11.1 Introduction;189
5.3.2;11.2 Method of Generating the Bulk Structure;190
5.3.3;11.3 Calculation of the Morphology with SUSHI;190
5.3.4;11.4 Procedure for Calculating Bulk Physical Properties;191
5.3.5;11.5 Display of Calculation Results;195
5.3.6;11.6 Concluding Remarks;196
5.3.7;11.7 Download Instruction;197
5.3.8;References;199
5.4;12 Polymer Blends: Interfacial Strength;200
5.4.1;12.1 Introduction;200
5.4.2;12.2 Calculation Model;201
5.4.3;12.3 Calculation Results;204
5.4.4;12.4 Conclusion;207
5.4.5;12.5 Download Instruction;208
5.4.6;References;209
5.5;13 Composites: Morphology;210
5.5.1;13.1 Introduction;210
5.5.2;13.2 Modeling;210
5.5.3;13.3 Results and Discussion;212
5.5.4;13.4 Application;216
5.5.5;13.5 Conclusion;216
5.5.6;13.6 Download Instruction;217
5.5.7;References;218
5.6;14 Composites: Interfacial Strength;219
5.6.1;14.1 Introduction;219
5.6.2;14.2 Simulation Conditions;219
5.6.3;14.3 Results and Discussion;223
5.6.4;14.4 Conclusion;225
5.6.5;14.5 Download Instruction;226
5.6.6;References;226
5.7;15 Cross-Linked Rubber;227
5.7.1;15.1 Introduction;227
5.7.2;15.2 Formation of Cross-Linked Structures;228
5.7.2.1;15.2.1 Formation Method;228
5.7.2.2;15.2.2 Procedure for Creating a Cross-Linked Structure;229
5.7.2.3;15.2.3 Creation of an Input UDF File;230
5.7.2.4;15.2.4 Calculation of Equilibration (1);232
5.7.2.5;15.2.5 Calculation of the Cross-Linking Reaction;233
5.7.2.6;15.2.6 Calculation of Equilibration (2);236
5.7.3;15.3 Elongational Physical Properties;237
5.7.3.1;15.3.1 Calculation of Elongational Deformation;237
5.7.3.2;15.3.2 Observation of the Deformed State;239
5.7.3.3;15.3.3 Calculation of the Stress–Strain Property;239
5.7.3.4;15.3.4 Example of Calculating the Elongational Physical Property (1): Method Using Cross-Linking Particles;241
5.7.3.5;15.3.5 Example of Calculating the Elongational Physical Property (2): Method for end Cross-Linking;244
5.7.4;15.4 Download Instruction;246
5.7.5;References;246
5.8;16 Thermoplastic Elastomers;247
5.8.1;16.1 Introduction;247
5.8.2;16.2 Initial Structure Preparation;248
5.8.2.1;16.2.1 Selection of a Calculation Model;249
5.8.2.2;16.2.2 Generation of BCC Structure;249
5.8.2.3;16.2.3 Setup for Zooming;253
5.8.2.4;16.2.4 Setup for Simulation Conditions of COGNAC;255
5.8.2.5;16.2.5 COGNAC Execution;257
5.8.3;16.3 Elongational Properties;258
5.8.3.1;16.3.1 Setup for Elongational Deformation;259
5.8.3.2;16.3.2 Preparation of the Initial Structure;260
5.8.3.3;16.3.3 Performing Uniaxial Elongation;261
5.8.3.4;16.3.4 Analyzing Results;261
5.8.4;16.4 Download Instruction;265
5.8.5;References;265
5.9;17 Filler-Filled Rubbers;266
5.9.1;17.1 Introduction;266
5.9.2;17.2 Filler Dispersion Structure;267
5.9.2.1;17.2.1 Calculation Model;267
5.9.2.2;17.2.2 Tips in Creating Input Data;268
5.9.2.3;17.2.3 Analysis of Output Data;270
5.9.2.4;17.2.4 Analysis of Results: Dispersion Structure;270
5.9.3;17.3 Elongational Properties;272
5.9.3.1;17.3.1 Calculation Model;272
5.9.3.2;17.3.2 Tips in Creating Input Data;273
5.9.3.3;17.3.3 Analysis of Output Data;275
5.9.3.4;17.3.4 Analysis of Results: Analysis of Stress–Strain Curves;275
5.9.4;17.4 Download Instruction;277
5.9.5;References;278
5.10;18 Structures of the Surface and Interface;279
5.10.1;18.1 Experimental Methods for the Estimation of Surface and Interface Structures of Polymers and the Simulation;279
5.10.2;18.2 The Distribution of Polymer Ends at the Surface of a Thin Film;280
5.10.3;18.3 Summary;285
5.10.4;18.4 Download Instruction;285
5.10.5;References;285
5.11;19 Glass Transition at the Surface and Interface;286
5.11.1;19.1 Introduction;286
5.11.2;19.2 Calculation Model;287
5.11.3;19.3 Tips in Creating Input Data;287
5.11.4;19.4 Analysis of Results: Glass Transition Temperatures of the Thin Film, Surface, and Interface;289
5.11.5;19.5 Download Instruction;291
5.11.6;References;291
5.12;20 Evaporation from Polymer Solution;292
5.12.1;20.1 Introduction;292
5.12.2;20.2 Calculation Model;293
5.12.3;20.3 Tips in Creating Input Data;294
5.12.4;20.4 Analysis of Output Data;294
5.12.5;20.5 Analysis of Results: Structural Analysis of Solvent Evaporation;295
5.12.6;20.6 Download Instruction;299
5.12.7;References;299
5.13;21 Crystallization in Thin Films of N-Alkanes;300
5.13.1;21.1 Introduction;300
5.13.2;21.2 Molecular Models and Simulation Conditions;301
5.13.3;21.3 Results of Simulations;303
5.13.3.1;21.3.1 Thin-Film Crystallization of C11 on the Flat Wall;303
5.13.3.2;21.3.2 Crystallization of C19 on Atomic Walls: The Effect of Commensuration on the Structure of the Film;304
5.13.4;21.4 Conclusions and Remarks;306
5.13.5;21.5 Download Instruction;308
5.13.6;References;308
5.14;22 Improvement of Adhesive Properties Through the Segregation of Oligomers and an Investigation of the Mechanism Using SUSHI Simulation;309
5.14.1;22.1 Introduction;309
5.14.2;22.2 Development Flow;310
5.14.2.1;22.2.1 Estimation of the Bubble Generation Mechanism;310
5.14.2.2;22.2.2 Investigation of Oligomers;311
5.14.2.3;22.2.3 Segregation of Oligomers into the Interface;312
5.14.3;22.3 Investigation of the Bubbling Suppression Mechanism Using SUSHI Simulation;313
5.14.3.1;22.3.1 Setting of the Interaction Parameter ? in Accordance with Experimental Results;314
5.14.3.2;22.3.2 Simulation Conditions for SUSHI;315
5.14.3.3;22.3.3 Simulation Results for OL-2 (?AB = 0.3);316
5.14.3.4;22.3.4 Consistency with XPS Results;316
5.14.3.5;22.3.5 Local Tg Near the Interface;317
5.14.3.6;22.3.6 Summary of the Simulation;318
5.14.4;22.4 Conclusions;319
5.15;23 Adsorption of Polyelectrolytes;320
5.15.1;23.1 Introduction;320
5.15.2;23.2 Method and Model Used by van de Steeg et al.;320
5.15.3;23.3 System Modeling Using SUSHI;321
5.15.4;23.4 Determination of SUSHI Parameters;322
5.15.5;23.5 Calculation and Analysis;324
5.15.6;23.6 Comparison of Calculation Results;325
5.15.6.1;23.6.1 Effect of Segment Charge;326
5.15.6.2;23.6.2 Effect of the Concentration of Added Salt;327
5.15.7;23.7 Concluding Remarks;328
5.15.8;23.8 Download Instruction;328
5.15.9;References;328
5.16;24 Adsorbed Structures and Surface Forces;329
5.16.1;24.1 Introduction;329
5.16.2;24.2 Background and Purpose of the Example Analysis;330
5.16.3;24.3 Method for Modeling the Adsorbed Structure;330
5.16.4;24.4 Calculation Conditions;331
5.16.4.1;24.4.1 Structure of Comb Block Chains;331
5.16.4.2;24.4.2 Adsorbed Structure Models;331
5.16.4.3;24.4.3 Adsorbed (Grafted) Amount;332
5.16.4.4;24.4.4 System Conditions;333
5.16.5;24.5 Method for Analyzing the Calculation Results (Generation of the Force Curve);333
5.16.6;24.6 Results and Discussion;334
5.16.6.1;24.6.1 Concentration Distribution;334
5.16.6.2;24.6.2 Force Curve;335
5.16.6.3;24.6.3 Effect of the Adsorbed Amount;335
5.16.7;24.7 Conclusions;337
5.16.8;24.8 Download Instruction;337
5.16.9;Reference;337
5.17;25 Analysis of Relaxation Mechanism of Thread-LikeMicelle Solution;338
5.17.1;25.1 Introduction;338
5.17.2;25.2 Viscoelastic Behavior of the Thread-Like Micellar System;339
5.17.3;25.3 Dissipative Particle Dynamics (DPD) Model of the Thread-Like Micelle;340
5.17.4;25.4 Simulation of the Crossing Dynamics;342
5.17.5;25.5 Results and Discussion;343
5.17.6;25.6 Conclusions;345
5.17.7;25.7 OCTA Example Run;345
5.17.8;25.8 Download Instruction;348
5.17.9;References;349
5.18;26 Vesicle Formation;350
5.18.1;26.1 Introduction;350
5.18.2;26.2 DPD Model for Amphiphiles;351
5.18.3;26.3 Simulation Conditions;352
5.18.4;26.4 Results and Discussion;353
5.18.5;26.5 Conclusions;357
5.18.6;26.6 OCTA Example Run;357
5.18.7;26.7 Download Instruction;359
5.18.8;References;359
5.19;27 Electrolyte Membranes;360
5.19.1;27.1 Introduction;360
5.19.2;27.2 Method;361
5.19.3;27.3 Results and Discussion;363
5.19.4;27.4 Conclusion;364
5.19.5;27.5 OCTA Example Run;365
5.19.6;27.6 Calculation of Parameters;367
5.19.7;27.7 Download Instruction;368
5.19.8;References;368
5.20;28 Orientation Birefringence;369
5.20.1;28.1 Introduction;369
5.20.2;28.2 Method of Calculating Orientation Birefringence;370
5.20.3;28.3 Input Data;371
5.20.4;28.4 Output Data;372
5.20.5;28.5 Results and Discussion;376
5.20.6;28.6 Download Instruction;376
5.20.7;References;377
5.21;29 Lithography;378
5.21.1;29.1 Introduction;378
5.21.2;29.2 Calculation Model;379
5.21.3;29.3 Tips in Creating Input Data;380
5.21.4;29.4 Analysis of Output Data;382
5.21.5;29.5 Analysis of Results: Structural Analysis of Solvent Evaporation;382
5.21.6;29.6 Download Instruction;384
5.21.7;References;385
6;Erratum;386
7;Index;388
Expected Target of Polymer Simulation.- Coarse-Grained Simulation.- Overview of OCTA.- COGNAC: Coarse-grained Molecular Dynamics Simulator.- SUSHI: Density Functional Theory Simulator.- PASTA & NAPLES: Rheology Simulator.- MUFFIN: Multi Phase Simulator.- KAPSEL: Colloidal Dispersion Simulator.- Melt Viscoelasticity.- Crystallization of Polymers.- Polymer Blends: Bulk Property.- Polymer Blends: Interfacial Strength.- Composites: Morphology.- Composites: Interfacial Strength.- Cross-linked Rubber.- Thermoplastic Elastomers.- Filler-filled Rubbers.- Structures of the Surface and Interface.- Glass Transition at the Surface and Interface.- Evaporation from Polymer Solution.- Crystallization in Thin Films of n-alkanes.- Improvement of Adhesive Properties utilizing Segregation of Oligomers and Investigation of Its Mechanism by SUSHI Simulation.- Adsorption of Polyelectrolytes.- Adsorbed Structures and Surface Forces.- Analysis of Relaxation Mechanism of Thread-like Micelle Solution.- Vesicle Formation.- Electrolyte Membranes.- Orientation Birefringence.- Lithography.




