Chauhan / Yadav / Verma | Machine Learning, Image Processing, Network Security and Data Sciences | E-Book | sack.de
E-Book

E-Book, Englisch, 364 Seiten

Reihe: Communications in Computer and Information Science

Chauhan / Yadav / Verma Machine Learning, Image Processing, Network Security and Data Sciences

5th International Conference, MIND 2023, Hamirpur, India, December 21–22, 2023, Revised Selected Papers
Erscheinungsjahr 2024
ISBN: 978-3-031-62217-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

5th International Conference, MIND 2023, Hamirpur, India, December 21–22, 2023, Revised Selected Papers

E-Book, Englisch, 364 Seiten

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-62217-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book constitutes the refereed proceedings of the 5th International Conference on Machine Learning, Image Processing, Network Security and Data Sciences, MIND 2023, held in Hamirpur, India, during December 21–22, 2023.

The 29 full papers included in this book were carefully reviewed and selected from 173 submissions. They were organized in topical sections as follows: Machine Learning; Image Processing; Network Security; and Data Sciences.

Chauhan / Yadav / Verma Machine Learning, Image Processing, Network Security and Data Sciences jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Machine Learning.
.- SynText - Data Augmentation Algorithm in NLP to improve performance of Emotion Classifiers.
.- Internet of Medical Things: Empowering Mobility and Health Monitoring with a Smart Walking Stick.
.- MRI Based Spatio-Temporal Model for Alzheimer’s Disease Prediction.
.- Comparative Analysis of Economy-based Multivariate Oil Price Prediction using LSTM.
.- Deep Learning based EV’s Charging Network Management.
.- A Machine Learning Model for Crop Yield Prediction Using Fertilizers Consumption and Land Area.
.- Detection and Classification of Waste Materials using Deep Learning Techniques.
.- A Comparative Analysis of ML Based Approaches for Identifying AQI Level.
.- Marker based Augmented Reality Application in Education domain.
.- Hate Speech Detection Using Machine Learning and Deep Learning Techniques.
.- Phishing Detection Using 1D-CNN and FF-CNN Models Based on URL of the Website.
.- Diabetes Prediction using machine learning classifiers.
.- A Deep Learning Method for Obfuscated Android Malware Detection.
.- Code-mixed language understanding using BiLSTM-BERT multi-attention fusion mechanism.
.- The Potential of 1D-CNN for EEG Mental Attention State Detection.
.- Potato Leaf Disease Classification Using Deep Learning Model.
.- Breast Cancer Detection: An Evaluation of Machine Learning, Ensemble Learning, and Deep Learning Algorithms.
.- Advancements in Facial Expression Recognition: A Comprehensive Analysis of Techniques.
.- Image Processing.
.- Sparse Representation with Residual Learning Model for Medical Image Classification.
.- COVID-19 Detection from Chest X-ray Images using GBM with Comparative Analysis.
.- Violence Detection in Indoor Domestic Environment using Multimodal Information.
.- Real-time Hand Gesture Recognition for American Sign Language using CNN, Mediapipe and Convexity approach.
.- Compressors using modified sorting and parallel counting.
.- Speed-invariant Gait Recognition using Correlation Factor Lists for Classroom Attendance Systems.
.- Network Security.
.- A Novel Unsupervised Learning Approach for False Data Injection Attack Detection in Smart Grid.
.- A Review of Authentication Schemes in Internet of Things.
.- A Multi-Stage Encryption Technique Using Asymmetric and Various Symmetric Ciphers.
.- Data Sciences.
.- Bridging the Gap: Condensing Knowledge Graphs for Metaphor Processing by Visualizing Relationships in Figurative and Literal Expressions.
.- Effectiveness of Influencer Marketing on Gen Z Consumer.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.