Buch, Englisch, 242 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g
Reihe: Universitext
Buch, Englisch, 242 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 400 g
Reihe: Universitext
ISBN: 978-0-387-96395-2
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
I. Bierberbach’s Three Theorems.- 1. Rigid Motions.- 2. Examples.- 3. Bierberbach’s First Theorem.- 4. Bierberbach’s Second Theorem.- 5. Digression — Group Extensions.- 6. Digression — Integral Repesentations of Finite Groups.- 7. Bieberbach’s Third Theorem and Some Remarks.- II. Flat Riemannian Manifolds.- 1. Introduction.- 2. A Tiny Bit of Differential Topology.- 3. Connections and Curvature.- 4. Riemannian Structures.- 5. Flat Manifolds.- 6. Conjectures and Counterexamples.- III. Classification Theorems.- 1. The Algebraic Structure of Bieberbach Groups.- 2. A General Classification Scheme for Bieberbach Groups.- 3. Digression — Cohomology of Groups.- 4. Examples.- 5. Holonomy Groups.- IV. Holonomy Groups of Prime Order.- 1. Introduction.- 2. Digression — Some Algebraic Number Theory.- 3. Modules over the Cyclotomic Ring.- 4. Modules over Groups of Prime Order.- 5. The Cohomology of Modules over Groups of Prime Order.- 6. The Classification Theorem.- 7. ?p-manifolds.- 8. An Interesting Example.- 9. The Riemannian Structure of Some ?p manifolds.- V. Automorphisms.- 1. The Basic Diagram.- 2. The Hochschild-Serre Exact Sequence.- 3. 9-Diagrams.- 4. Automorphisms of Group Extensions.- 5. Automorphisms of Bieberbach Groups.- 6. Automorphisms of Flat Manifolds.- 7. Automorphisms of ?p-manifolds.