Liebe Besucherinnen und Besucher,
heute ab 15 Uhr feiern wir unser Sommerfest und sind daher nicht erreichbar. Ab morgen sind wir wieder wie gewohnt für Sie da. Wir bitten um Ihr Verständnis – Ihr Team von Sack Fachmedien
E-Book, Englisch, Band 7, 261 Seiten, eBook
Charalambous Dimension Theory
1. Auflage 2019
ISBN: 978-3-030-22232-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Selection of Theorems and Counterexamples
E-Book, Englisch, Band 7, 261 Seiten, eBook
Reihe: Atlantis Studies in Mathematics
ISBN: 978-3-030-22232-1
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
- Topological Spaces. - The Three Main Dimension Functions. - The Countable Sum Theorem for Covering Dimension. - Urysohn Inequalities. - The Dimension of Euclidean Spaces. - Connected Components and Dimension. - Factorization and Compactification Theorems for Separable Metric Spaces. - Coincidence, Product and Decomposition Theorems for Separable Metric Spaces. - Universal Spaces for Separable Metric Spaces of Dimension at Most n. - Axiomatic Characterization of the Dimension of Separable Metric Spaces. - Cozero Sets and Covering Dimension dim0. - ?-Spaces and the Failure of the Sum and Subset Theorems for dim0. - The Inductive Dimension Ind0. - Two Classical Examples. - The Gap Between the Covering and the Inductive Dimensions of Compact Hausdorff Spaces. - Inverse Limits and N-Compact Spaces. - Some Standard Results Concerning Metric Spaces. - The Mardeši´c Factorization Theorem and the Dimension of Metrizable Spaces. - A Metrizable Space with Unequal Inductive Dimensions. - No Finite Sum Theorem for the Small Inductive Dimension of Metrizable Spaces. - Failure of the Subset Theorem for Hereditarily Normal Spaces. - A Zero-Dimensional, Hereditarily Normal and Lindelöf Space Containing Subspaces of Arbitrarily Large Dimension. - Cosmic Spaces and Dimension. - n -Cardinality and Bernstein Sets. - The van Douwen Technique for Constructing Counterexamples. - No Compactification Theorem for the Small Inductive Dimension of Perfectly Normal Spaces. - Normal Products and Dimension. - Fully Closed and Ring-Like Maps. - Fedorcuk’s Resolutions. - Compact Spaces Without Intermediate Dimensions. - More Continua with Distinct Covering and Inductive Dimensions. - The Gaps Between the Dimensions of Normal Hausdorff Spaces.