Chaovalitwongse / Pardalos / Xanthopoulos | Computational Neuroscience | E-Book | www2.sack.de
E-Book

E-Book, Englisch, Band 38, 370 Seiten

Reihe: Springer Optimization and Its Applications

Chaovalitwongse / Pardalos / Xanthopoulos Computational Neuroscience


1. Auflage 2010
ISBN: 978-0-387-88630-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 38, 370 Seiten

Reihe: Springer Optimization and Its Applications

ISBN: 978-0-387-88630-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This volume includes contributions from diverse disciplines including electrical engineering, biomedical engineering, industrial engineering, and medicine, bridging a vital gap between the mathematical sciences and neuroscience research. Covering a wide range of research topics, this volume demonstrates how various methods from data mining, signal processing, optimization and cutting-edge medical techniques can be used to tackle the most challenging problems in modern neuroscience.

Chaovalitwongse / Pardalos / Xanthopoulos Computational Neuroscience jetzt bestellen!

Weitere Infos & Material


1;Preface;7
2;Contents;10
3;List of Contributors;13
4;Part I Data Mining;19
4.1;1 Optimization in Reproducing Kernel Hilbert Spacesof Spike Trains;20
4.1.1;1.1 Introduction;21
4.1.2;1.2 Some Background on RKHS Theory;22
4.1.3;1.3 Inner Product for Spike Times;24
4.1.4;1.4 Inner Product for Spike Trains;25
4.1.5;1.5 Properties and Estimation of the Memoryless Cross-Intensity Kernel;27
4.1.5.1;1.5.1 Properties;27
4.1.5.2;1.5.2 Estimation;29
4.1.6;1.6 Induced RKHS and Congruent Spaces;30
4.1.6.1;1.6.1 Space Spanned by Intensity Functions;31
4.1.6.2;1.6.2 Induced RKHS;31
4.1.6.3;1.6.3 mCI Kernel and the RKHS Induced by ;32
4.1.6.4;1.6.4 mCI Kernel as a Covariance Kernel;33
4.1.7;1.7 Principal Component Analysis;34
4.1.7.1;1.7.1 Optimization in the RKHS;34
4.1.7.2;1.7.2 Optimization in the Space Spanned by the Intensity Functions;37
4.1.7.3;1.7.3 Results;38
4.1.8;1.8 Conclusion;42
4.1.9;References;44
4.2;2 Investigating Functional Cooperation in the Human Brain Using Simple Graph-Theoretic Methods ;47
4.2.1;2.1 Introduction and Background;47
4.2.2;2.2 Graph Theory and Neuroscience;49
4.2.3;2.3 A Database of Imaging Experiments;51
4.2.4;2.4 The Usefulness of Co-activation Graphs;53
4.2.5;2.5 Relating fMRI to EEG;55
4.2.6;2.6 Conclusion;57
4.2.7;References;57
4.3;3 Methodological Framework for EEG Feature Selection Based on Spectral and Temporal Profiles;59
4.3.1;3.1 Introduction;60
4.3.2;3.2 Methods;61
4.3.2.1;3.2.1 Methodology Overview;61
4.3.2.2;3.2.2 Feature Extraction (Step 1);62
4.3.2.3;3.2.3 Feature Selection (Step 2);66
4.3.2.4;3.2.4 Feature Refinement (Steps 3 and 4);66
4.3.3;3.3 Results;68
4.3.3.1;3.3.1 Simulation Test;68
4.3.4;3.4 Discussion;69
4.3.5;3.5 Conclusion;70
4.3.6;References;71
4.4;4 Blind Source Separation of Concurrent Disease-Related Patterns from EEG in Creutzfeldt--Jakob Disease for Assisting Early Diagnosis ;73
4.4.1;4.1 Introduction;74
4.4.2;4.2 Patients and EEG Recordings;78
4.4.3;4.3 Methods;80
4.4.3.1;4.3.1 Independent Component Analysis and Extractionof CJD-Related Components;80
4.4.3.2;4.3.2 Bayesian Information Criterion;81
4.4.4;4.4 Results;82
4.4.4.1;4.4.1 Determination of the Number of Sources;82
4.4.4.2;4.4.2 CJD-Related Feature Extraction;83
4.4.4.3;4.4.3 Feature Extraction by PCA;85
4.4.5;4.5 Discussions;85
4.4.6;4.6 Conclusions;88
4.4.7;References;89
4.5;5 Comparison of Supervised Classification Methods with Various Data Preprocessing Procedures for Activation Detectionin fMRI Data;91
4.5.1;5.1 Introduction;91
4.5.2;5.2 Data Set;92
4.5.3;5.3 Data Preprocessing;93
4.5.4;5.4 Pattern Recognition Methods;94
4.5.4.1;5.4.1 Fisher Linear Discriminant;95
4.5.4.2;5.4.2 Support Vector Machine;95
4.5.4.3;5.4.3 Gaussian Nave Bayes;96
4.5.4.4;5.4.4 Correlation Analysis;96
4.5.4.5;5.4.5 k-Nearest Neighbor;96
4.5.5;5.5 Results;97
4.5.6;5.6 Conclusions;98
4.5.7;References;98
4.6;6 Recent Advances of Data Biclustering with Application in Computational Neuroscience;100
4.6.1;6.1 Introduction;100
4.6.1.1;6.1.1 Motivation;100
4.6.1.2;6.1.2 Data Input;101
4.6.1.3;6.1.3 Objective of Task;102
4.6.1.4;6.1.4 History;103
4.6.1.5;6.1.5 Outline;104
4.6.2;6.2 Biclustering Types and Structures;104
4.6.2.1;6.2.1 Notations;104
4.6.2.2;6.2.2 Bicluster Types;105
4.6.2.3;6.2.3 Biclustering Structures;107
4.6.3;6.3 Biclustering Techniques and Algorithms;109
4.6.3.1;6.3.1 Based on Matrix Means and Residues;109
4.6.3.2;6.3.2 Based on Matrix Ordering, Reordering, and Decomposition;111
4.6.3.3;6.3.3 Based on Bipartite Graphs;115
4.6.3.4;6.3.4 Based on Information Theory;118
4.6.3.5;6.3.5 Based on Probability;119
4.6.3.6;6.3.6 Comparison of Biclustering Algorithms;121
4.6.4;6.4 Application of Biclustering in Computational Neuroscience;122
4.6.5;6.5 Conclusions;124
4.6.6;References;124
4.7;7 A Genetic Classifier Account for the Regulation of Expression;128
4.7.1;7.1 Introduction;128
4.7.1.1;7.1.1 Motivation;128
4.7.1.2;7.1.2 Background;129
4.7.2;7.2 Model and Methods;130
4.7.2.1;7.2.1 Basic Assumptions;130
4.7.2.2;7.2.2 Model Structure;130
4.7.2.3;7.2.3 Model Equations;131
4.7.2.4;7.2.4 Stability;132
4.7.3;7.3 Results;132
4.7.3.1;7.3.1 Composition by Overlap of Nodes;132
4.7.3.1.1;7.3.1.1 Complete Overlap;132
4.7.3.1.2;7.3.1.2 Incomplete Overlap;134
4.7.3.2;7.3.2 Multiple Gene Scenarios;134
4.7.3.2.1;7.3.2.1 Three Genes;134
4.7.3.3;7.3.3 Composition by Infinite Chains;135
4.7.3.3.1;7.3.3.1 Chain of Genes Including A 1-Product Gene;136
4.7.3.3.2;7.3.3.2 Chain of Genes Without A 1-Product Gene;136
4.7.3.4;7.3.4 Subchains;137
4.7.4;7.4 Discussion;137
4.7.5;References;138
5;Part II Modeling;139
5.1;8 Neuroelectromagnetic Source Imaging of Brain Dynamics ;140
5.1.1;8.1 Introduction;140
5.1.1.1;8.1.1 Neuronal Origins of Electromagnetic Signals;141
5.1.2;8.2 Measurement Modalities;142
5.1.2.1;8.2.1 Magnetoencephalography (MEG);142
5.1.2.2;8.2.2 Electroencephalography (EEG);143
5.1.2.3;8.2.3 Electrocorticography (ECoG);143
5.1.3;8.3 Data Preprocessing;143
5.1.4;8.4 Overview of Modeling Steps;145
5.1.4.1;8.4.1 Modeling of Neural Generators;145
5.1.4.2;8.4.2 Anatomical Modeling of Head Tissues and Neural Sources;146
5.1.4.3;8.4.3 Multimodal Geometric Registration;146
5.1.4.4;8.4.4 Forward Modeling;147
5.1.4.5;8.4.5 Inverse Modeling;147
5.1.5;8.5 Parametric Dipole Modeling;148
5.1.5.1;8.5.1 Uncorrelated Noise Model;148
5.1.5.2;8.5.2 Correlated Noise Model;149
5.1.5.3;8.5.3 Global Minimization;150
5.1.6;8.6 Source Space-Based Distributed and Sparse Methods;150
5.1.6.1;8.6.1 Bayesian Maximum a Posteriori (MAP) Estimates;151
5.1.6.2;8.6.2 Dynamic Statistical Parametric Mapping (dSPM);154
5.1.6.3;8.6.3 Standardized Low Resolution Brain Electromagnetic Tomography (sLORETA);155
5.1.6.4;8.6.4 Sparse Bayesian Learning (SBL) and Automatic Relevance Determination (ARD);156
5.1.7;8.7 Spatial Scanning and Beamforming;158
5.1.7.1;8.7.1 Matched Filter;159
5.1.7.2;8.7.2 Multiple Signal Classification (MUSIC);159
5.1.7.3;8.7.3 Linearly Constrained Minimum Variance (LCMV) Beamforming;160
5.1.7.4;8.7.4 Synthetic Aperture Magnetometry (SAM);160
5.1.7.5;8.7.5 Dynamic Imaging of Coherent Sources (DICS);161
5.1.7.6;8.7.6 Other Spatial Filtering Methods;161
5.1.8;8.8 Comparison of Methods;162
5.1.9;8.9 Conclusion;162
5.1.10;References;164
5.2;9 Optimization in Brain? -- Modeling Human Behavior and Brain Activation Patterns with Queuing Network and Reinforcement Learning Algorithms ;169
5.2.1;9.1 Introduction;169
5.2.2;9.2 Modeling Behavioral and Brain Imaging Phenomena in Transcription Typing with Queuing Networks and Reinforcement Learning Algorithms;171
5.2.2.1;9.2.1 Behavioral Phenomena;171
5.2.2.2;9.2.2 Brain Imaging Phenomena;171
5.2.2.3;9.2.3 A Queuing Network Model with Reinforcement Learning Algorithms;172
5.2.2.3.1;9.2.3.1 The Static Portion of the Queuing Network Model;172
5.2.2.3.2;9.2.3.2 The Dynamic Portion of the Queuing Network Model: Self-Organization of the Queuing Network with Reinforcement Learning Algorithms;173
5.2.2.4;9.2.4 Model Predictions of three Skill Learning Phenomenaand two Brain Imaging Phenomena;176
5.2.2.4.1;9.2.4.1 Predictions of the three Skill Learning Phenomena;176
5.2.2.4.2;9.2.4.2 Predictions of the First Brain Imaging Phenomenon;177
5.2.2.4.3;9.2.4.3 Predictions of the Second Brain Imaging Phenomenon;177
5.2.2.5;9.2.5 Simulation of the three Skill Learning Phenomenaand the two Brain Imaging Phenomena;178
5.2.2.5.1;9.2.5.1 The First and the Second Skill Learning Phenomena;178
5.2.2.5.2;9.2.5.2 The Third Skill Learning Phenomena;178
5.2.2.5.3;9.2.5.3 The First Brain Imaging Phenomena;179
5.2.2.5.4;9.2.5.4 The Second Brain Imaging Phenomena;179
5.2.3;9.3 Modeling the Basic PRP and Practice Effect on PRP with Queuing Networks and Reinforcement Learning Algorithms;180
5.2.3.1;9.3.1 Modeling the Basic PRP and the Practice Effect on PRPwith Queuing Networks;180
5.2.3.1.1;9.3.1.1 Learning Process in Individual Servers;182
5.2.3.1.2;9.3.1.2 Learning Process in the Simplest Queuing Network with two Routes;183
5.2.3.2;9.3.2 Predictions of the Basic PRP and the Practice Effect on PRP with the Queuing Network Model;184
5.2.3.3;9.3.3 Simulation Results;184
5.2.4;9.4 Discussion;186
5.2.5;References;189
5.3;10 Neural Network Modeling of Voluntary Single-Joint Movement Organization I. Normal Conditions ;192
5.3.1;10.1 Introduction;192
5.3.2;10.2 Models and Theories of Motor Control;193
5.3.3;10.3 The Extended VITE--FLETE Models Without Dopamine;195
5.3.4;10.4 Conclusion;200
5.3.5;References;200
5.4;11 Neural Network Modeling of Voluntary Single-Joint Movement Organization II. Parkinson's Disease ;203
5.4.1;11.1 Introduction;203
5.4.2;11.2 Brain Anatomy in Parkinson's Disease;204
5.4.3;11.3 Empirical Signatures;206
5.4.4;11.4 Is There Dopaminergic Innervation of the Cortexand Spinal Cord?;206
5.4.5;11.5 Effects of Dopamine Depletion on Neuronal, Electromyographic, and Movement Parameters in PD Humans and MPTP Animals;207
5.4.5.1;11.5.1 Cellular Disorganization in Cortex;207
5.4.5.2;11.5.2 Reduction of Neuronal Intensity and of Rate of Development of Neuronal Discharge in the PrimaryMotor Cortex;208
5.4.5.3;11.5.3 Significant Increase in Mean Duration of Neuronal Discharge in Primary Motor Cortex Preceding and Following Onset of Movement;208
5.4.5.4;11.5.4 Prolongation of Behavioral Simple Reaction Time;209
5.4.5.5;11.5.5 Repetitive Triphasic Pattern of Muscle Activation;210
5.4.5.6;11.5.6 Electromechanical Delay Time Is Increased;210
5.4.5.7;11.5.7 Depression of Rate of Development and Peak Amplitudeof the First Agonist Burst of EMG Activity;210
5.4.5.8;11.5.8 Movement Time Is Significantly Increased;211
5.4.5.9;11.5.9 Reduction of Peak Velocity;212
5.4.5.10;11.5.10 Reduction of Peak Force and Rate of Force Production;212
5.4.5.11;11.5.11 Movement Variability;212
5.4.6;11.6 The Extended VITE--FLETE Models with Dopamine;213
5.4.7;11.7 Simulated Effects of Dopamine Depletion on the Cortical Neural Activities;216
5.4.8;11.8 Simulated Effects of Dopamine Depletion on EMG Activities;217
5.4.9;11.9 Conclusion;219
5.4.10;References;220
5.5;12 Parametric Modeling Analysis of Optical Imaging Data on Neuronal Activities in the Brain;223
5.5.1;12.1 Introduction;224
5.5.2;12.2 Methods;226
5.5.2.1;12.2.1 Recording of Optical Signals and Preprocessing;226
5.5.2.2;12.2.2 Modeling;228
5.5.2.3;12.2.3 Classification of Optical Signals Based on Activation Timing;229
5.5.3;12.3 Results;231
5.5.3.1;12.3.1 Estimation of STF Model Parameters;231
5.5.3.2;12.3.2 Classification of Pixel Activity Patterns;232
5.5.4;12.4 Discussion;234
5.5.5;References;234
5.6;13 Advances Toward Closed-Loop Deep Brain Stimulation ;236
5.6.1;13.1 Introduction;236
5.6.2;13.2 Nerve Stimulation;237
5.6.3;13.3 Local Field Potentials;238
5.6.4;13.4 Parkinson's Disease;239
5.6.4.1;13.4.1 Treatments;240
5.6.5;13.5 Deep Brain Stimulation;241
5.6.5.1;13.5.1 DBS Mechanism;241
5.6.5.2;13.5.2 Apparatus;241
5.6.5.3;13.5.3 Stimulus Specifications;242
5.6.5.4;13.5.4 DBS Programming;244
5.6.5.5;13.5.5 Side Effects;246
5.6.6;13.6 Biosignal Processing;246
5.6.6.1;13.6.1 Features;247
5.6.6.2;13.6.2 Classifiers;247
5.6.6.3;13.6.3 Feature Selection;248
5.6.7;13.7 Closed-Loop DBS;248
5.6.7.1;13.7.1 Demand-Controlled DBS;249
5.6.7.2;13.7.2 ALOPEX and DBS;250
5.6.7.3;13.7.3 Genetic Algorithms and DBS;251
5.6.7.4;13.7.4 Hardware Implementations;251
5.6.8;13.8 Related Advances in Other Neuroprosthetic Research;252
5.6.8.1;13.8.1 Closed-Loop Cardiac Pacemaker Technology;253
5.6.8.2;13.8.2 Brain-to-Computer Interface;253
5.6.9;13.9 Neural Network Modeling and the Basal Ganglia;254
5.6.10;13.10 Summary;255
5.6.11;References;255
5.7;14 Molecule-Inspired Methods for Coarse-Grain Multi-System Optimization ;263
5.7.1;14.1 Introduction;264
5.7.2;14.2 Biomolecular Computing In Vitro;265
5.7.3;14.3 Biomolecular Computing In Silico;266
5.7.4;14.4 Neural Nets in Biomolecules;268
5.7.5;14.5 Conclusions and Future Work;272
5.7.6;References;274
6;Part III Brain Dynamics/Synchronization;276
6.1;15 A Robust Estimation of Information Flow in Coupled Nonlinear Systems ;277
6.1.1;15.1 Introduction;277
6.1.2;15.2 Methodology;279
6.1.2.1;15.2.1 Transfer Entropy (TE);279
6.1.2.2;15.2.2 Improved Computation of Transfer Entropy;280
6.1.2.2.1;15.2.2.1 Selection of k;280
6.1.2.2.2;15.2.2.2 Selection of l;280
6.1.2.2.3;15.2.2.3 Selection of Radius r;281
6.1.2.3;15.2.3 Statistical Significance of Transfer Entropy;283
6.1.2.4;15.2.4 Detecting Causality Using Transfer Entropy;284
6.1.3;15.3 Simulation Example;284
6.1.3.1;15.3.1 Statistical Significance of TE and NTE;285
6.1.3.2;15.3.2 Robustness to Noise;287
6.1.4;15.4 Discussion and Conclusion;288
6.1.5;References;289
6.2;16 An Optimization Approach for Finding a Spectrum of Lyapunov Exponents ;290
6.2.1;16.1 Introduction;290
6.2.2;16.2 Lyapunov Exponents;291
6.2.3;16.3 An Optimization Approach;293
6.2.3.1;16.3.1 Theory;294
6.2.3.2;16.3.2 Implementation Details;295
6.2.3.2.1;16.3.2.1 Phase Space Reconstruction;296
6.2.4;16.4 Models Used in the Computational Experiments;299
6.2.4.1;16.4.1 Lorenz Attractor;299
6.2.4.2;16.4.2 Rössler Attractor;300
6.2.4.3;16.4.3 Hénon Map;301
6.2.4.4;16.4.4 The Hénon--Heiles Equations;301
6.2.5;16.5 Computational Experiments;302
6.2.5.1;16.5.1 Numerical Computations;302
6.2.5.2;16.5.2 Sensitivity Analysis;304
6.2.6;16.6 Summary and Conclusion;306
6.2.7;References;306
6.3;17 Dynamical Analysis of the EEG and Treatment of Human Status Epilepticus by Antiepileptic Drugs ;309
6.3.1;17.1 Introduction;310
6.3.2;17.2 Materials and Methods;311
6.3.2.1;17.2.1 Recording Procedure and EEG Data;311
6.3.2.1.1;17.2.1.1 EEG from Barrow Neurological Institute, Phoenix, Arizona;312
6.3.2.1.2;17.2.1.2 EEG from Mayo Clinic Hospital, Scottsdale, Arizona;312
6.3.2.2;17.2.2 Measures of Brain Dynamics;313
6.3.2.2.1;17.2.2.1 Measure of Chaos(STLmax);313
6.3.2.2.2;17.2.2.2 Measure of Dynamical Entrainment;315
6.3.3;17.3 Results;315
6.3.4;17.4 Conclusion;317
6.3.5;References;318
6.4;18 Analysis of Multichannel EEG Recordings Based on Generalized Phase Synchronization and Cointegrated VAR ;320
6.4.1;18.1 Introduction;320
6.4.2;18.2 Integrated and Cointegrated VAR;322
6.4.2.1;18.2.1 Augmented Dickey--Fuller Test for Testing the Null Hypothesis of a Unit Root;323
6.4.2.2;18.2.2 Estimation of Cointegrated VAR(p) Processes;325
6.4.2.3;18.2.3 Testing for the Rank of Cointegration;327
6.4.3;18.3 The Role of Phase Synchronization in Neural Dynamics;328
6.4.4;18.4 Phase Estimation Using Hilbert Transform;329
6.4.5;18.5 Multivariate Approach to Phase Synchrony via Cointegrated VAR;330
6.4.5.1;18.5.1 Cointegration Rank as a Measure of Synchronization among Different EEG Channels;331
6.4.5.2;18.5.2 Absence Seizures;334
6.4.5.3;18.5.3 Numerical Study of Synchrony in Multichannel EEG Recordings from Patients with Absence Epilepsy;334
6.4.6;18.6 Conclusion;338
6.4.6.1;18.6.1 Phillips--Ouliaris Cointegration Test;339
6.4.7;References;341
6.5;19 Antiepileptic Therapy Reduces Coupling Strength Among Brain Cortical Regions in Patients with Unverricht--Lundborg Disease: A Pilot Study ;343
6.5.1;19.1 Introduction;344
6.5.2;19.2 Data Information;347
6.5.3;19.3 Synchronization Measures;348
6.5.3.1;19.3.1 Mutual Information;348
6.5.3.2;19.3.2 Nonlinear Interdependencies;350
6.5.4;19.4 Statistical Tests and Data Analysis;351
6.5.5;19.5 Conclusion and Discussion;354
6.5.6;References;355
6.6;20 Seizure Monitoring and Alert System for Brain Monitoring in an Intensive Care Unit ;358
6.6.1;20.1 Introduction;359
6.6.2;20.2 Preictal Transition and Seizure Prediction;360
6.6.3;20.3 Methods;362
6.6.3.1;20.3.1 Chaos Theory and Epilepsy;362
6.6.3.2;20.3.2 Statistical Method for Pairwise Comparison of STLMAX;364
6.6.3.3;20.3.3 Finding Critical Sites by Quadratic Optimization Approach;365
6.6.4;20.4 Two Main Components of the Seizure Monitoring and Alert System;366
6.6.4.1;20.4.1 Algorithm for Generating Automatic Warnings about Impending Seizure from EEG;367
6.6.5;20.5 Conclusions;368
6.6.6;References;368



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.