E-Book, Englisch, 518 Seiten, eBook
Volume 1
E-Book, Englisch, 518 Seiten, eBook
Reihe: Lecture Notes in Mechanical Engineering
ISBN: 978-981-13-2697-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;About the Editors;14
4;1 Performance Analysis of Semi-active Suspension System Based on Suspension Working Space and Dynamic Tire Deflection;16
4.1;1 Introduction;16
4.2;2 Quarter Car Model;17
4.2.1;2.1 Road Inputs;18
4.2.1.1;2.1.1 Bump Input;18
4.2.1.2;2.1.2 Sine Wave Input;19
4.3;3 Control Strategies of Semi-active Suspension;19
4.3.1;3.1 Skyhook Control;19
4.3.2;3.2 Groundhook Control;20
4.3.3;3.3 Hybrid Control;20
4.3.4;3.4 Fuzzy Logic Control;21
4.4;4 Simulation Results and Discussion;22
4.5;5 Conclusion;26
4.6;Appendix;27
4.7;References;30
5;2 Study on Wear Behavior of Al-Based Hybrid Metal Matrix Composites Reinforced with Al2O3/SiC Particles;31
5.1;1 Introduction;31
5.2;2 Experimental Set-up and Methodology;32
5.2.1;2.1 Material Selection;32
5.2.2;2.2 Fabrication of HMMCs by Stir Casting Process;32
5.2.3;2.3 Density and Hardness;33
5.2.4;2.4 Sand Abrasion Test Using Taguchi Technique;33
5.2.4.1;2.4.1 Design of Experiment (DOE);34
5.3;3 Results and Discussion;35
5.3.1;3.1 Density and Vickers Hardness;35
5.3.2;3.2 Three-Body Sand Abrasion Wear Test;35
5.3.3;3.3 Effect of Composition and Revolutions on S/N Ratio;37
5.4;4 Conclusions;37
5.5;References;38
6;3 Development of Simulation Model for Effective Testing and Verification of Servo Vacuum Booster;40
6.1;1 Introduction;40
6.2;2 LabVIEW Simulation;41
6.3;3 Result Analysis;44
6.4;4 Conclusion;45
6.5;References;45
7;4 Investigation of Relation Between Ignition Timing and Advance Angle to Improve Engine Performance;46
7.1;1 Introduction;46
7.2;2 System Description;47
7.2.1;2.1 Mechanical Design;47
7.2.2;2.2 Electrical Design;47
7.2.3;2.3 PCB Development;48
7.3;3 Algorithm;48
7.4;4 Experimental Setup;48
7.5;5 Algorithm for Spark Timing;49
7.6;6 System Features;50
7.6.1;6.1 Microcontroller Features;50
7.6.2;6.2 Electrical Components List;50
7.6.3;6.3 Control Panel;51
7.7;7 Conclusion;51
7.8;References;52
8;5 Experimental Investigation of Vapour Absorption Refrigeration Cycle for Automobile Cabin Cooling;53
8.1;1 Introduction;53
8.2;2 Literature Review;54
8.3;3 System Description;56
8.4;4 Results and Discussion;57
8.5;5 Conclusions;61
8.6;References;62
9;6 Effects of Nano- and Micro-Filler on Water Diffusion and Leakage Current of GRP Composites;64
9.1;1 Introduction;64
9.2;2 Materials and Methods;65
9.2.1;2.1 Materials;65
9.2.2;2.2 Fabrication of Composites;65
9.2.3;2.3 Experiments/Measurements;67
9.3;3 Results and Discussion;68
9.3.1;3.1 X-Ray Diffraction Analysis;68
9.3.2;3.2 Morphology;69
9.3.3;3.3 Surface Composition Analysis;69
9.3.4;3.4 Dye Penetration;69
9.3.5;3.5 Water Diffusion Electrical Test;70
9.3.6;3.6 Leakage Current of GRP Composite Rod;71
9.4;4 Conclusions;71
9.5;Acknowledgements;72
9.6;References;72
10;7 Effect of Interleaving and Low Velocity Impact on the Dielectric Properties of Composite Laminates;73
10.1;1 Introduction;73
10.2;2 Experimental Method;74
10.2.1;2.1 Materials;74
10.2.2;2.2 Fabrication of Laminates;74
10.3;3 Measurements;75
10.3.1;3.1 Morphology;75
10.3.2;3.2 Low Velocity Impact Test;75
10.3.3;3.3 Dielectric Property;75
10.4;4 Results and Discussion;75
10.4.1;4.1 SEM Analysis;75
10.4.2;4.2 Low Velocity Impact Test;76
10.4.3;4.3 Dielectric Constant;76
10.4.4;4.4 Dissipation Factor;78
10.4.5;4.5 AC Conductivity;79
10.5;5 Conclusion;80
10.6;Acknowledgements;81
10.7;References;81
11;8 Numerical Modeling and Study of Vaporization of Single Droplet and Mono-dispersed Spray Under Mixed Convection Conditions;82
11.1;1 Introduction;82
11.2;2 Solution Methodology;83
11.3;3 Vaporization: Without Droplet Dynamics;83
11.3.1;3.1 Numerical Methodology;83
11.4;4 Vaporization: With Droplet Dynamics;84
11.4.1;4.1 Computational Domain, Boundary Conditions and Initial Conditions;84
11.4.2;4.2 Grid Independence Study;85
11.5;5 Results and Discussions;86
11.5.1;5.1 Initial Red/Grd?=?0.09 Case: High Evaporation Rate;86
11.5.2;5.2 Initial Red/Grd?=?2.12 Case: Medium Evaporation Rate;87
11.5.3;5.3 Initial Red/Grd?=?60 Case: Low Evaporation Rate;88
11.6;6 Conclusions;90
11.7;References;91
12;9 Incremental Sheet Forming: An Experimental Study on the Geometric Accuracy of Formed Parts;92
12.1;1 Introduction;92
12.2;2 Experimental Plan and Methodology;93
12.3;3 Result and Discussion;94
12.4;4 Conclusion;97
12.5;References;97
13;10 Experimental Analysis of Implementing Roughness on NACA 0018 Airfoil;99
13.1;1 Introduction;99
13.2;2 Research Methodology;100
13.2.1;2.1 Tunnel Facility;100
13.2.2;2.2 Selection of Silicon Carbide Sheet;101
13.2.3;2.3 Airfoil;101
13.2.4;2.4 Pressure Transducer;102
13.3;3 Results and Discussion;102
13.4;4 Conclusion;103
13.5;Acknowledgements;104
13.6;References;104
14;11 Numerical Investigation of Siting the Wind Turbine on Vel Tech University Campus;105
14.1;1 Introduction;105
14.2;2 Problem Statement and Modelling;107
14.3;3 Computational Study of Urban Physics;108
14.3.1;3.1 Computational Domain and Grid;108
14.3.2;3.2 Boundary Condition;111
14.3.3;3.3 Simulation Physics;114
14.4;4 Results;114
14.5;5 Discussion;115
14.6;6 Conclusion;116
14.7;Acknowledgements;117
14.8;References;117
15;12 An Improved Unsteady CFD Analysis of Pitching Airfoil Using OpenFOAM;119
15.1;1 Introduction;119
15.2;2 Methods;120
15.2.1;2.1 Problem Setup and Method of Solution;120
15.2.2;2.2 Boundary and Initial Conditions;120
15.2.3;2.3 Turbulence Model;121
15.2.4;2.4 New Methodology;121
15.3;3 Results and Discussion;121
15.4;4 Conclusion;124
15.5;References;125
16;13 Development of 12 Channel Temperature Acquisition System for Heat Exchanger Using MAX6675 and Arduino Interface;126
16.1;1 Introduction;126
16.2;2 Literature Review;127
16.3;3 Control System Design and Mechatronics Interface;127
16.4;4 Analysis of Heat Exchanger Device;129
16.5;5 Experimentation and Testing;130
16.6;6 Results, Validation, and Discussion;131
16.7;7 Conclusion;131
16.8;References;132
17;14 Optimization of Clutch Cover Mounting Base Plate Through Twin Threaded Grub Screw;133
17.1;1 Introduction;133
17.2;2 Problem Identification;134
17.3;3 Proposed Methodology;134
17.4;4 Scope of Work;134
17.5;5 Merits of Grub Screw;134
17.6;6 Design;135
17.7;7 Conclusion;138
17.8;References;139
18;15 Active Vortex Shedding Control for Flow Over a Circular Cylinder Using Rearward Jet Injection at Low Reynolds Number;140
18.1;1 Introduction;140
18.2;2 Computational Methodology;140
18.3;3 Results and Discussion;141
18.4;4 Conclusion;145
18.5;References;145
19;16 Performance Augmentation of Boron–HTPB-Based Solid Fuels by Energetic Additives for Hybrid Gas Generator in Ducted Rocket Applications;147
19.1;1 Introduction;147
19.2;2 Experimental Methods;150
19.2.1;2.1 Composition, Characterization, and Preparation of Solid Fuel Sample;150
19.2.2;2.2 OFBS Design and Experimental Procedures;152
19.3;3 Results and Discussion;153
19.3.1;3.1 Characterization of Boron Particles and Calorific Evaluation of Fuels;153
19.3.2;3.2 Sample Homogeneity of B–Mg- and B–Ti-Based Solid Fuel Combinations;155
19.3.3;3.3 Flame Visualization and Regression Rate Estimation;155
19.3.4;3.4 Characterization of Condensed Combustion Products;158
19.4;4 Conclusions;159
19.5;Acknowledgements;160
19.6;References;160
20;17 Experimental Investigation of Wear and Hardness Test Over AA2219 with Reinforcement of Tungsten Carbide;162
20.1;1 Introduction;162
20.2;2 Materials and Methodology;163
20.3;3 Result and Discussion;163
20.3.1;3.1 Hardness;163
20.3.2;3.2 Wear Test;164
20.3.3;3.3 Characterization;165
20.3.4;3.4 Characterization by SEM;166
20.4;4 Conclusion;167
20.5;References;168
21;18 Pedagogical Evaluation of Mechanical Engineering Education Using Additive Manufacturing;169
21.1;1 Introduction;169
21.2;2 Scenario of Additive Manufacturing in Engineering Education;170
21.3;3 Additive Manufacturing in Mechanical Engineering Education;170
21.4;4 Additive Manufacturing Case Study;171
21.5;5 Comparison of Parameters;172
21.6;6 Conclusion;174
21.7;References;174
22;19 Numerical Investigation of Cu–H2O Nanofluid in a Differentially Heated Square Cavity with Conducting Square Cylinder Placed at Arbitrary Locations;175
22.1;1 Introduction;175
22.2;2 Mathematical Formulation;177
22.3;3 Results and Discussions;177
22.4;4 Conclusion;180
22.5;Acknowledgements;180
22.6;References;180
23;20 Numerical Investigation of Single Ramp Scramjet Inlet Characteristics at Mach Number 5.96 Due to Shock Wave–Boundary Layer Interaction;182
23.1;1 Introduction;182
23.2;2 Inlet Model and Computational Method;183
23.2.1;2.1 Inlet Model;183
23.2.2;2.2 Computational Methods;183
23.3;3 Results and Discussion;183
23.3.1;3.1 Steady Analysis;183
23.3.2;3.2 Unsteady Analysis;185
23.4;4 Conclusion;186
23.5;References;187
24;21 Numerical Analysis of Discrete Element Camber Morphing Airfoil in the Reynolds Number of Conventional Flyers;188
24.1;1 Introduction;188
24.2;2 Geometry of Airfoils and Computational Setup;189
24.2.1;2.1 Camber Morphing;189
24.2.2;2.2 Computational Model and Validation;190
24.3;3 Results and Discussion;190
24.3.1;3.1 Aerodynamic Performance of Morphed Airfoils;190
24.4;4 Conclusions;193
24.5;References;193
25;22 Comparison of Quarter Car Suspension Model Using Two Different Controllers;195
25.1;1 Introduction;195
25.2;2 Mathematical Modeling;196
25.2.1;2.1 Passive System;198
25.2.2;2.2 Active System;198
25.3;3 Controller Design;199
25.3.1;3.1 PID;199
25.3.2;3.2 LQR;200
25.4;4 Results and Discussion;202
25.5;5 Conclusion;204
25.6;Acknowledgements;204
25.7;References;204
26;23 Hot Forging Characteristics of Powder Metallurgy Duplex Stainless Steels Developed from 304L and 430L Pre-alloyed Powders;205
26.1;1 Introduction;205
26.2;2 Experimental Procedure;206
26.3;3 Results and Discussions;208
26.3.1;3.1 Density of Duplex Stainless Steel;208
26.3.2;3.2 Microstructure;208
26.3.3;3.3 Tensile Strength and Hardness Evaluation;209
26.4;4 Conclusions;210
26.5;References;210
27;24 Machinability Studies of TiAlN-/AlCrN-Coated and Uncoated Tungsten Carbide Tools on Turning EN25 Alloy Steel;212
27.1;1 Introduction;212
27.2;2 Experimental Details;213
27.3;3 Result and Discussions;214
27.3.1;3.1 Tool Wear Analysis;214
27.3.2;3.2 Surface Roughness Analysis;215
27.3.3;3.3 The Taguchi Method Evaluation Results;217
27.4;4 Conclusion;219
27.5;References;220
28;25 Study on Temperature Indicating Paint for Surface Temperature Measurement—A Review;221
28.1;1 Introduction;221
28.2;2 Global Temperature Measurement Techniques;222
28.2.1;2.1 Discrete Sensor Arrays;222
28.2.2;2.2 Liquid Crystal Thermometers or TLC;222
28.2.3;2.3 IR Thermography;222
28.2.4;2.4 Thermal Phosphors;222
28.3;3 Irreversible Thermal Paints or Temperature Indicating Paints (TIPs);223
28.4;4 Thermal Paint Chemistry;223
28.5;5 Chemistry Behind Colour Transition;224
28.6;6 Calibration Methodology;225
28.7;7 Recent Research Works Using TIP;226
28.8;8 Conclusion;228
28.9;References;228
29;26 Inflight Parameter Estimation Framework for Fixed-Wing UAV;230
29.1;1 Introduction;230
29.2;2 Flight Instrumentation: Airframe Assembly;231
29.3;3 Flight Instrumentation: DAQ System Integration;232
29.4;4 Flight Instrumentation: Selection of Sensors;234
29.5;5 Inflight Test Results;236
29.6;6 Conclusion;236
29.7;References;236
30;27 Experimental Studies on Surface Roughness of H12 Tool Steel in EDM Using Different Tool Materials;238
30.1;1 Introduction;238
30.2;2 Experimental Work;239
30.3;3 Method of Analysis;239
30.3.1;3.1 Taguchi and ANOVA Method;239
30.3.2;3.2 Measurement of Surface Roughness;240
30.4;4 Results and Discussion;240
30.4.1;4.1 Analysis of Surface Roughness;240
30.5;5 Conclusions;242
30.6;References;243
31;28 Effect of Equivalence Ratio on Parameters of Coal-Fired Updraft Gasifier;245
31.1;1 Introduction;245
31.2;2 Mathematical Modeling;246
31.2.1;2.1 Geometry;246
31.2.2;2.2 Assumptions;247
31.2.3;2.3 Discrete Phase Modeling;247
31.2.4;2.4 Chemical Reactions;248
31.2.5;2.5 Boundary Conditions;250
31.2.6;2.6 Numerical Considerations;250
31.3;3 Results and Discussion;250
31.3.1;3.1 Gasification Phenomena;251
31.3.2;3.2 Effect of Equivalence Ratio;252
31.4;4 Conclusion;253
31.5;References;253
32;29 Numerical Analysis of Two-Phase Blood Flow in Idealized Artery with Blockage;254
32.1;1 Introduction;254
32.2;2 Mathematical Modeling;255
32.2.1;2.1 Continuity Equation;255
32.2.2;2.2 Momentum Equation;255
32.2.3;2.3 Blood Rheology;256
32.3;3 Numerical Considerations;256
32.4;4 Results;257
32.5;5 Conclusion;261
32.6;References;261
33;30 Generalized Design of Experiments for Structural Optimization;263
33.1;1 Introduction;263
33.2;2 Pre-optimization Analysis;264
33.3;3 Sensitivity Analysis;265
33.3.1;3.1 Observation from Sensitivity Analysis;266
33.3.2;3.2 Design Points and Response Surfaces;267
33.4;4 Interpolation Model;267
33.4.1;4.1 Multidimensional Bi-section;268
33.5;5 Results and Conclusion;269
33.6;References;270
34;31 Numerical Prediction of Performance of a Double-Acting ?-Type Stirling Engine;271
34.1;1 Introduction;271
34.2;2 Numerical Simulation Methods and Theory;273
34.2.1;2.1 Basic Assumptions;273
34.2.2;2.2 Governing Equations;273
34.2.3;2.3 Porous Medium Theory;274
34.2.4;2.4 Computation Model;275
34.3;3 Numerical Simulation Model;276
34.3.1;3.1 Working Fluid Domain Geometry and Mesh Model;276
34.3.2;3.2 Piston Displacement Function;276
34.3.3;3.3 Boundary Conditions Setup;277
34.3.4;3.4 Charged Mass Setup;277
34.3.5;3.5 Engine Performance Evaluation;277
34.4;4 Simulation Results and Discussion;278
34.4.1;4.1 Baseline Case Results and Discussion;278
34.4.2;4.2 Effects of Heating Temperature and Engine Speed on Engine Performance;279
34.4.3;4.3 Effects of Regenerator’s Porosity on Engine Performance;280
34.5;5 Conclusions;282
34.6;References;282
35;32 Design Optimization, Automation and Testing Analysis of Dust Cleaning Mechanism for Solar Photovoltaic Power Plant;283
35.1;1 Introduction;283
35.2;2 Design Optimizations of Dust Cleaning Mechanism;284
35.3;3 Drawing of Dust Cleaning Mechanism;285
35.4;4 Automation of Dust Cleaning Mechanism;286
35.4.1;4.1 Selection of Electronic and Electrical Components and Brief History;286
35.5;5 Test Setup and Testing;287
35.6;6 Result and Discussion;290
35.6.1;6.1 Energy Required for Dust Cleaning Mechanism;290
35.7;7 Conclusion;292
35.8;References;293
36;33 Optimization of a Dual-Stepped Cone Inlet for Scramjet Applications;294
36.1;1 Introduction;294
36.2;2 Ramp Selections;295
36.2.1;2.1 Ramp 1 Selection;295
36.2.2;2.2 Ramp 2 Selections;295
36.3;3 CFD Analysis;296
36.3.1;3.1 CFD Analysis—Mach 7;297
36.3.2;3.2 Mach 2;297
36.4;4 Conclusion;298
36.5;References;299
37;34 Experimental Investigations for Improving the Strength of Parts Manufactured Using FDM Process;300
37.1;1 Introduction;300
37.1.1;1.1 Fused Deposition Modeling (FDM);300
37.1.2;1.2 Machine Used for FDM Process;301
37.2;2 Materials Used for Printing Test Specimens;302
37.3;3 Experimental Testing;302
37.3.1;3.1 Printing/Preparation of Specimens for Experimental Testing;303
37.3.2;3.2 Tests and Results;303
37.4;4 Gray Relational Analysis (GRA);304
37.5;References;306
38;35 Effects of Wall Thinning Behaviour During Pipe Bending Process—An Experimental Study;307
38.1;1 Introduction;307
38.2;2 Wall Thinning;308
38.2.1;2.1 Control of Wall Thinning;309
38.3;3 Bending at Atmospheric (Cold) and Elevated (Hot) Temperature;309
38.3.1;3.1 Cold Bending;310
38.3.2;3.2 Incremental Hot Bending;311
38.4;4 Results and Discussion;312
38.5;5 Conclusion;312
38.6;Appendix 1: Pipe Bending Terminologies and Types;313
38.7;Types of Pipe Bending;314
38.8;Appendix 2: Pipe Benders;314
38.8.1;Hydraulic Bender;314
38.8.2;Incremental Bender;315
38.9;References;316
39;36 Computational Simulation of Wind Flow Behavior Around a Building Structure;317
39.1;1 Introduction;317
39.2;2 Methodology;318
39.2.1;2.1 Setup Description;318
39.3;3 Numerical Model;319
39.3.1;3.1 Turbulence Model;319
39.3.2;3.2 Computational Setting and Parameters;319
39.4;4 Results;320
39.5;5 Conclusion;321
39.6;References;322
40;37 Numerical Analysis of Bubble Hydrodynamics in a Steam Reactor Chemical Looping Reforming System;324
40.1;1 Introduction;324
40.2;2 Numerical Considerations;326
40.3;3 Results and Discussions;327
40.3.1;3.1 Unsteady and Quasi-steady Bubble Hydrodynamics;328
40.3.2;3.2 Effect of Particle Size of Oxygen Carrier;330
40.4;4 Conclusion;330
40.5;References;331
41;38 Numerical Study of Flow Field Investigation of Air Jet Impingement on Different Solid Block Size;333
41.1;1 Introduction;333
41.2;2 Mathematical Formulation;334
41.2.1;2.1 Problem Description;334
41.2.2;2.2 Governing Equations;335
41.2.3;2.3 Numerical Procedure;335
41.2.4;2.4 Validation Work;335
41.2.5;2.5 Parameters Affecting the Flow Field;336
41.3;3 Results and Discussion;336
41.3.1;3.1 Effect of Re on Flow Field for Block Size 0.75 * 0.75;337
41.3.2;3.2 Effect of Re on Flow Field for Block Size 0.75 * 1.50;337
41.3.3;3.3 Effect of Re on Vortex Center for Block Size 0.75 * 0.75;338
41.3.4;3.4 Effect of Re on Vortex Center for Block Size 0.75 * 1.50;339
41.3.5;3.5 Horizontal Velocity Profile for Different Block Size;339
41.4;4 Conclusion;340
41.5;References;341
42;39 Stress Intensity Factors for a Plate with Slant Edge Crack Built with Rapid Manufacturing Process;342
42.1;1 Introduction;342
42.2;2 Experimentation;343
42.2.1;2.1 Material Description;343
42.2.2;2.2 Fabrication;344
42.2.3;2.3 Testing;345
42.3;3 Finite Element Analysis;345
42.4;4 Result and Discussion;346
42.5;5 Conclusion;349
42.6;References;350
43;40 Design, Analyze, and Develop a Hybrid Silencer for 250 kVA DG Set;352
43.1;1 Introduction;352
43.1.1;1.1 Problem Statement and Objectives;353
43.2;2 Designing of Component;353
43.2.1;2.1 Design for Sound Pressure;353
43.2.2;2.2 Design for Back Pressure;356
43.3;3 Numerical Verification;356
43.3.1;3.1 Sound Pressure;356
43.3.2;3.2 Back Pressure;357
43.3.3;3.3 Inference;358
43.4;4 Results;359
43.5;5 Conclusion;359
43.6;References;359
44;41 Design, Analysis, and Simulation of a Power-Split Device for Hybrid Two-Wheeler;361
44.1;1 Introduction;361
44.2;2 Design of H2W with Power-Split Device;363
44.2.1;2.1 Selection of Base Vehicle;363
44.2.2;2.2 Selection of DC Motor;363
44.2.3;2.3 Design of Epicyclic Gear Train;363
44.2.4;2.4 Clutch Actuation Algorithm;364
44.3;3 Simulation;365
44.4;4 Results;366
44.5;5 Conclusion;367
44.6;6 Future Work;367
44.7;Sec11;367
44.8;Sec12;367
44.9;References;370
45;42 Development of Inhibition System for SIS Process;371
45.1;1 Introduction;371
45.2;2 SIS Machine;372
45.3;3 Inhibition Mechanism Modelling;373
45.4;4 Inhibition Preparation and Comparative Studies;375
45.5;5 Conclusion;375
45.6;References;377
46;43 Finite Element Analysis of Lifting Lugs Under Actual Factory Conditions;378
46.1;1 Introduction;378
46.2;2 Modelling and Calculations;378
46.2.1;2.1 Case Study: Factory Lifting Conditions;381
46.2.2;2.2 Dynamic Considerations;382
46.3;3 Discussion;384
46.4;4 Conclusion;384
46.5;References;384
47;44 Numerical Simulation of High Velocity Impact on Composite Targets Using Advanced Computational Techniques;385
47.1;1 Introduction;385
47.2;2 Methodology;385
47.3;3 Numerical Models;386
47.3.1;3.1 Modelling of Ceramic/Metal Composite System;386
47.4;4 Simulation of High Velocity Impact;386
47.4.1;4.1 STUDY-1: Determining the Ballistic Limit Velocity for Given Target and Projectile;387
47.4.2;4.2 Results;389
47.5;5 Results and Discussions;390
47.5.1;5.1 Simulation of 3D Model Ceramic/Metal Composite Under High Velocity Impact;392
47.5.2;5.2 Simulated Results for 2D Model;393
47.5.3;5.3 Comparison of 2D Model and 3D Model;394
47.6;6 Conclusion;397
47.7;References;397
48;45 Study of Future Refrigerant for Vapor Compression Refrigeration Systems;400
48.1;1 Introduction;400
48.2;2 Ozone Layer Depletion;401
48.3;3 Global Warming Potential;401
48.4;4 History of Refrigerants;401
48.5;5 Industrial Gases as Refrigerants;402
48.6;6 Hydrocarbon Manufacture;402
48.6.1;6.1 Example Processing Steps;403
48.7;7 Ammonia Manufacture;403
48.8;8 CO2 Manufacture;405
48.9;9 Future Refrigerant;405
48.9.1;9.1 Evaluation of Working Fluids in Refrigeration Systems;405
48.9.2;9.2 Exact Meaning of Global Warming Potential (GWP);407
48.9.3;9.3 Designing a Low GWP Molecule;407
48.9.4;9.4 Comparison of HFC Versus HFO;407
48.9.5;9.5 Refrigerant Flammability Classifications;408
48.9.6;9.6 Primary Flammability Parameters;409
48.9.7;9.7 Flammable Property Comparison;409
48.10;10 Optimizing for the Future;409
48.11;11 Low GWP HFO Products for Refrigeration;411
48.12;12 Conclusion;411
48.13;References;412
49;46 Numerical Simulation of Viscous Flow Past Elliptic Cylinder;414
49.1;1 Introduction;414
49.2;2 Numerical Strategy;415
49.3;3 Results and Discussion;416
49.4;4 Conclusion;418
49.5;Acknowledgements;419
49.6;References;419
50;47 Processing and Evaluation of Mechanical Properties of Sisal and Bamboo Chemically Treated Hybrid Composite;420
50.1;1 Introduction;420
50.2;2 Experimental Procedures;421
50.2.1;2.1 Materials and Methods;421
50.2.2;2.2 Testing;422
50.3;3 Results and Discussion;423
50.3.1;3.1 Tensile Test;423
50.3.2;3.2 Impact Test;424
50.3.3;3.3 Flexural Test;425
50.4;4 Conclusion;425
50.5;References;426
51;48 On the Surface Finish Improvement in Hybrid Additive Subtractive Manufacturing Process;427
51.1;1 Introduction;427
51.2;2 Development of HASM Process Set Up;429
51.3;3 Development of Toolpath for HASM;430
51.4;4 Case Study;431
51.5;5 Conclusion;432
51.6;Acknowledgements;433
51.7;References;433
52;49 Impact of Control Unit Gains on Noise Mitigation in Swash Plate Pump Pumping Systems;434
52.1;1 Introduction;434
52.2;2 Axial Piston Pump’s Construction;436
52.3;3 Control Unit;436
52.4;4 Control Unit and Noise;437
52.5;5 Control Strategies;437
52.6;6 Experimental Set-up;439
52.6.1;6.1 The Hydraulic Subsystem;439
52.6.2;6.2 The Control Subsystem;441
52.7;7 Results;442
52.8;8 Conclusion;442
52.9;References;443
53;50 Discussion of Past, Present and Future Perspectives of Refrigerants and Its Future Scope;444
53.1;1 Introduction;444
53.2;2 Refrigerant;445
53.2.1;2.1 Refrigerants Identification by Number and Colour Code;445
53.2.2;2.2 Chlorofluorocarbon (CFC) Refrigerant;445
53.2.3;2.3 Hydrochlorofluorocarbon (HCFC) Refrigerant;446
53.2.4;2.4 Hydrofluorocarbon (HFC) Refrigerant;447
53.2.5;2.5 Natural Refrigerants;449
53.2.6;2.6 Refrigerant Blends (Azeotropic–Zeotropic);450
53.3;3 Future Refrigerant;450
53.3.1;3.1 Comparison Between R22 and R410a;451
53.3.2;3.2 R410a Refrigerant;452
53.4;4 Conclusion;453
53.5;References;453
54;51 Analysis of Dynamic Probing Errors in Measuring Machines;455
54.1;1 Introduction;455
54.2;2 Model Construction;456
54.3;3 Results and Discussions;457
54.3.1;3.1 Analysis with Different Probe Ball Materials;457
54.3.2;3.2 Analysis with Different Stem Materials;458
54.3.3;3.3 Mathematical Expression for Different Stem Materials;460
54.4;4 Conclusions;464
54.5;References;464
55;52 Thrust Prediction Model for Varying Chamber Pressure for a Hypergolic Bipropellant Liquid Rocket Engine;465
55.1;1 Introduction;465
55.2;2 Methodology;465
55.2.1;2.1 Test Setup;466
55.2.2;2.2 Model Formulation;466
55.3;3 Results and Discussion;468
55.3.1;3.1 Generation of Thrust Equation;468
55.3.2;3.2 Thrust Measurement for Validation of Model;469
55.4;4 Conclusion;470
55.5;Acknowledgements;470
55.6;References;470
56;53 Experimental Studies on Different Proportions of CB-Filled Natural Rubber Composites with Precipitated Silica and Silica Gel;471
56.1;1 Introduction;471
56.2;2 Experimental Procedure;472
56.2.1;2.1 Materials and Compound Preparation;472
56.2.2;2.2 Testing of Physical Properties;472
56.2.3;2.3 Morphological Study;474
56.3;3 Results and Discussion;474
56.3.1;3.1 Physical Properties;474
56.3.2;3.2 Morphological Analysis;477
56.4;4 Conclusion;479
56.5;References;479
57;54 Fuzzy Logic Simulation for Automatic Speed Control System;481
57.1;1 Introduction;481
57.2;2 Mathematical Calculations;482
57.2.1;2.1 Mathematical Calculation for Mechanical Braking Torque;482
57.2.2;2.2 Let Us Apply Same Concept and Formulas to Suzuki Ciaz Vehicle;483
57.2.3;2.3 Apply This Mechanical Braking Torque Values in Electromagnetic Braking Torque Formula;483
57.3;3 Appling Fuzzy Logic;485
57.3.1;3.1 Grouping of Fuzzy Values into Triangular Membership Function;485
57.3.2;3.2 Forming into Sub-iterations;486
57.3.3;3.3 Forming into Fuzzy Sets;486
57.4;4 Forming of Fuzzy Rules in LabVIEW Software;486
57.5;5 Input/output Values for Triangular Membership Function in LabVIEW Software;487
57.6;6 Output Verification;487
57.6.1;6.1 Verification of Manually Calculated Values to LabVIEW Fuzzy Logic Controller Output;490
57.7;7 Conclusion;490
57.8;References;491
58;55 A Review of Contemporary Research on Root Canal Obturation and Related Quality Assessment Techniques;492
58.1;1 Introduction;492
58.2;2 Contemporary Review and Comparison of Root Canal Obturation Techniques;493
58.2.1;2.1 Classification of Root Canal Obturation Techniques [2];493
58.2.2;2.2 Comparison of Root Canal Obturation Techniques;494
58.3;3 Consultation with Expert of Endodontic and Design Engineering;495
58.4;4 Contemporary Review of Micro-leakage Studies and Mechanical Sealing;496
58.5;5 Micro-leakage Evaluation, Quality Assessment Techniques, and Comparison;498
58.5.1;5.1 Micro-leakage Evaluation and Quality Assessment Techniques;498
58.5.2;5.2 Comparison of Micro-leakage Evaluation and Quality Assessment Techniques;501
58.6;6 Most Recent Endodontic Researches;503
58.7;7 Discussion;504
58.8;Acknowledgments;505
58.9;References;505
59;56 Adaptive Fault Tolerance Flight Controller for Aircraft Actuator Failure;507
59.1;1 Introduction;507
59.2;2 Aircraft Model;508
59.3;3 Flight Controller Design;509
59.4;4 Simulation;510
59.5;5 Conclusion;512
59.6;References;515
60;Author Index;516