Chandrasekhar / Yang / Gowthaman | Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) | E-Book | sack.de
E-Book

E-Book, Englisch, 518 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

Chandrasekhar / Yang / Gowthaman Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)

Volume 1

E-Book, Englisch, 518 Seiten, eBook

Reihe: Lecture Notes in Mechanical Engineering

ISBN: 978-981-13-2697-4
Verlag: Springer Singapore
Format: PDF
Kopierschutz: 1 - PDF Watermark



The book includes the best articles presented by researchers, academicians and industrial experts at the International Conference on “Innovative Design and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018)”. The book discusses new concept  in designs, and analysis and manufacturing technologies for improved performance through specific and/or multi-functional  design aspects to optimise the system size, weight-to-strength ratio, fuel efficiency and operational capability. Other aspects of the conference address the ways and means of numerical analysis, simulation and additive manufacturing to accelerate the product development cycles.Describing  innovative methods, the book provides valuable reference material for educational and research organizations, as well as industry, wanting to undertake challenging projects of design engineering and product development.
Chandrasekhar / Yang / Gowthaman Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2018) jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1;Preface;6
2;Contents;8
3;About the Editors;14
4;1 Performance Analysis of Semi-active Suspension System Based on Suspension Working Space and Dynamic Tire Deflection;16
4.1;1 Introduction;16
4.2;2 Quarter Car Model;17
4.2.1;2.1 Road Inputs;18
4.2.1.1;2.1.1 Bump Input;18
4.2.1.2;2.1.2 Sine Wave Input;19
4.3;3 Control Strategies of Semi-active Suspension;19
4.3.1;3.1 Skyhook Control;19
4.3.2;3.2 Groundhook Control;20
4.3.3;3.3 Hybrid Control;20
4.3.4;3.4 Fuzzy Logic Control;21
4.4;4 Simulation Results and Discussion;22
4.5;5 Conclusion;26
4.6;Appendix;27
4.7;References;30
5;2 Study on Wear Behavior of Al-Based Hybrid Metal Matrix Composites Reinforced with Al2O3/SiC Particles;31
5.1;1 Introduction;31
5.2;2 Experimental Set-up and Methodology;32
5.2.1;2.1 Material Selection;32
5.2.2;2.2 Fabrication of HMMCs by Stir Casting Process;32
5.2.3;2.3 Density and Hardness;33
5.2.4;2.4 Sand Abrasion Test Using Taguchi Technique;33
5.2.4.1;2.4.1 Design of Experiment (DOE);34
5.3;3 Results and Discussion;35
5.3.1;3.1 Density and Vickers Hardness;35
5.3.2;3.2 Three-Body Sand Abrasion Wear Test;35
5.3.3;3.3 Effect of Composition and Revolutions on S/N Ratio;37
5.4;4 Conclusions;37
5.5;References;38
6;3 Development of Simulation Model for Effective Testing and Verification of Servo Vacuum Booster;40
6.1;1 Introduction;40
6.2;2 LabVIEW Simulation;41
6.3;3 Result Analysis;44
6.4;4 Conclusion;45
6.5;References;45
7;4 Investigation of Relation Between Ignition Timing and Advance Angle to Improve Engine Performance;46
7.1;1 Introduction;46
7.2;2 System Description;47
7.2.1;2.1 Mechanical Design;47
7.2.2;2.2 Electrical Design;47
7.2.3;2.3 PCB Development;48
7.3;3 Algorithm;48
7.4;4 Experimental Setup;48
7.5;5 Algorithm for Spark Timing;49
7.6;6 System Features;50
7.6.1;6.1 Microcontroller Features;50
7.6.2;6.2 Electrical Components List;50
7.6.3;6.3 Control Panel;51
7.7;7 Conclusion;51
7.8;References;52
8;5 Experimental Investigation of Vapour Absorption Refrigeration Cycle for Automobile Cabin Cooling;53
8.1;1 Introduction;53
8.2;2 Literature Review;54
8.3;3 System Description;56
8.4;4 Results and Discussion;57
8.5;5 Conclusions;61
8.6;References;62
9;6 Effects of Nano- and Micro-Filler on Water Diffusion and Leakage Current of GRP Composites;64
9.1;1 Introduction;64
9.2;2 Materials and Methods;65
9.2.1;2.1 Materials;65
9.2.2;2.2 Fabrication of Composites;65
9.2.3;2.3 Experiments/Measurements;67
9.3;3 Results and Discussion;68
9.3.1;3.1 X-Ray Diffraction Analysis;68
9.3.2;3.2 Morphology;69
9.3.3;3.3 Surface Composition Analysis;69
9.3.4;3.4 Dye Penetration;69
9.3.5;3.5 Water Diffusion Electrical Test;70
9.3.6;3.6 Leakage Current of GRP Composite Rod;71
9.4;4 Conclusions;71
9.5;Acknowledgements;72
9.6;References;72
10;7 Effect of Interleaving and Low Velocity Impact on the Dielectric Properties of Composite Laminates;73
10.1;1 Introduction;73
10.2;2 Experimental Method;74
10.2.1;2.1 Materials;74
10.2.2;2.2 Fabrication of Laminates;74
10.3;3 Measurements;75
10.3.1;3.1 Morphology;75
10.3.2;3.2 Low Velocity Impact Test;75
10.3.3;3.3 Dielectric Property;75
10.4;4 Results and Discussion;75
10.4.1;4.1 SEM Analysis;75
10.4.2;4.2 Low Velocity Impact Test;76
10.4.3;4.3 Dielectric Constant;76
10.4.4;4.4 Dissipation Factor;78
10.4.5;4.5 AC Conductivity;79
10.5;5 Conclusion;80
10.6;Acknowledgements;81
10.7;References;81
11;8 Numerical Modeling and Study of Vaporization of Single Droplet and Mono-dispersed Spray Under Mixed Convection Conditions;82
11.1;1 Introduction;82
11.2;2 Solution Methodology;83
11.3;3 Vaporization: Without Droplet Dynamics;83
11.3.1;3.1 Numerical Methodology;83
11.4;4 Vaporization: With Droplet Dynamics;84
11.4.1;4.1 Computational Domain, Boundary Conditions and Initial Conditions;84
11.4.2;4.2 Grid Independence Study;85
11.5;5 Results and Discussions;86
11.5.1;5.1 Initial Red/Grd?=?0.09 Case: High Evaporation Rate;86
11.5.2;5.2 Initial Red/Grd?=?2.12 Case: Medium Evaporation Rate;87
11.5.3;5.3 Initial Red/Grd?=?60 Case: Low Evaporation Rate;88
11.6;6 Conclusions;90
11.7;References;91
12;9 Incremental Sheet Forming: An Experimental Study on the Geometric Accuracy of Formed Parts;92
12.1;1 Introduction;92
12.2;2 Experimental Plan and Methodology;93
12.3;3 Result and Discussion;94
12.4;4 Conclusion;97
12.5;References;97
13;10 Experimental Analysis of Implementing Roughness on NACA 0018 Airfoil;99
13.1;1 Introduction;99
13.2;2 Research Methodology;100
13.2.1;2.1 Tunnel Facility;100
13.2.2;2.2 Selection of Silicon Carbide Sheet;101
13.2.3;2.3 Airfoil;101
13.2.4;2.4 Pressure Transducer;102
13.3;3 Results and Discussion;102
13.4;4 Conclusion;103
13.5;Acknowledgements;104
13.6;References;104
14;11 Numerical Investigation of Siting the Wind Turbine on Vel Tech University Campus;105
14.1;1 Introduction;105
14.2;2 Problem Statement and Modelling;107
14.3;3 Computational Study of Urban Physics;108
14.3.1;3.1 Computational Domain and Grid;108
14.3.2;3.2 Boundary Condition;111
14.3.3;3.3 Simulation Physics;114
14.4;4 Results;114
14.5;5 Discussion;115
14.6;6 Conclusion;116
14.7;Acknowledgements;117
14.8;References;117
15;12 An Improved Unsteady CFD Analysis of Pitching Airfoil Using OpenFOAM;119
15.1;1 Introduction;119
15.2;2 Methods;120
15.2.1;2.1 Problem Setup and Method of Solution;120
15.2.2;2.2 Boundary and Initial Conditions;120
15.2.3;2.3 Turbulence Model;121
15.2.4;2.4 New Methodology;121
15.3;3 Results and Discussion;121
15.4;4 Conclusion;124
15.5;References;125
16;13 Development of 12 Channel Temperature Acquisition System for Heat Exchanger Using MAX6675 and Arduino Interface;126
16.1;1 Introduction;126
16.2;2 Literature Review;127
16.3;3 Control System Design and Mechatronics Interface;127
16.4;4 Analysis of Heat Exchanger Device;129
16.5;5 Experimentation and Testing;130
16.6;6 Results, Validation, and Discussion;131
16.7;7 Conclusion;131
16.8;References;132
17;14 Optimization of Clutch Cover Mounting Base Plate Through Twin Threaded Grub Screw;133
17.1;1 Introduction;133
17.2;2 Problem Identification;134
17.3;3 Proposed Methodology;134
17.4;4 Scope of Work;134
17.5;5 Merits of Grub Screw;134
17.6;6 Design;135
17.7;7 Conclusion;138
17.8;References;139
18;15 Active Vortex Shedding Control for Flow Over a Circular Cylinder Using Rearward Jet Injection at Low Reynolds Number;140
18.1;1 Introduction;140
18.2;2 Computational Methodology;140
18.3;3 Results and Discussion;141
18.4;4 Conclusion;145
18.5;References;145
19;16 Performance Augmentation of Boron–HTPB-Based Solid Fuels by Energetic Additives for Hybrid Gas Generator in Ducted Rocket Applications;147
19.1;1 Introduction;147
19.2;2 Experimental Methods;150
19.2.1;2.1 Composition, Characterization, and Preparation of Solid Fuel Sample;150
19.2.2;2.2 OFBS Design and Experimental Procedures;152
19.3;3 Results and Discussion;153
19.3.1;3.1 Characterization of Boron Particles and Calorific Evaluation of Fuels;153
19.3.2;3.2 Sample Homogeneity of B–Mg- and B–Ti-Based Solid Fuel Combinations;155
19.3.3;3.3 Flame Visualization and Regression Rate Estimation;155
19.3.4;3.4 Characterization of Condensed Combustion Products;158
19.4;4 Conclusions;159
19.5;Acknowledgements;160
19.6;References;160
20;17 Experimental Investigation of Wear and Hardness Test Over AA2219 with Reinforcement of Tungsten Carbide;162
20.1;1 Introduction;162
20.2;2 Materials and Methodology;163
20.3;3 Result and Discussion;163
20.3.1;3.1 Hardness;163
20.3.2;3.2 Wear Test;164
20.3.3;3.3 Characterization;165
20.3.4;3.4 Characterization by SEM;166
20.4;4 Conclusion;167
20.5;References;168
21;18 Pedagogical Evaluation of Mechanical Engineering Education Using Additive Manufacturing;169
21.1;1 Introduction;169
21.2;2 Scenario of Additive Manufacturing in Engineering Education;170
21.3;3 Additive Manufacturing in Mechanical Engineering Education;170
21.4;4 Additive Manufacturing Case Study;171
21.5;5 Comparison of Parameters;172
21.6;6 Conclusion;174
21.7;References;174
22;19 Numerical Investigation of Cu–H2O Nanofluid in a Differentially Heated Square Cavity with Conducting Square Cylinder Placed at Arbitrary Locations;175
22.1;1 Introduction;175
22.2;2 Mathematical Formulation;177
22.3;3 Results and Discussions;177
22.4;4 Conclusion;180
22.5;Acknowledgements;180
22.6;References;180
23;20 Numerical Investigation of Single Ramp Scramjet Inlet Characteristics at Mach Number 5.96 Due to Shock Wave–Boundary Layer Interaction;182
23.1;1 Introduction;182
23.2;2 Inlet Model and Computational Method;183
23.2.1;2.1 Inlet Model;183
23.2.2;2.2 Computational Methods;183
23.3;3 Results and Discussion;183
23.3.1;3.1 Steady Analysis;183
23.3.2;3.2 Unsteady Analysis;185
23.4;4 Conclusion;186
23.5;References;187
24;21 Numerical Analysis of Discrete Element Camber Morphing Airfoil in the Reynolds Number of Conventional Flyers;188
24.1;1 Introduction;188
24.2;2 Geometry of Airfoils and Computational Setup;189
24.2.1;2.1 Camber Morphing;189
24.2.2;2.2 Computational Model and Validation;190
24.3;3 Results and Discussion;190
24.3.1;3.1 Aerodynamic Performance of Morphed Airfoils;190
24.4;4 Conclusions;193
24.5;References;193
25;22 Comparison of Quarter Car Suspension Model Using Two Different Controllers;195
25.1;1 Introduction;195
25.2;2 Mathematical Modeling;196
25.2.1;2.1 Passive System;198
25.2.2;2.2 Active System;198
25.3;3 Controller Design;199
25.3.1;3.1 PID;199
25.3.2;3.2 LQR;200
25.4;4 Results and Discussion;202
25.5;5 Conclusion;204
25.6;Acknowledgements;204
25.7;References;204
26;23 Hot Forging Characteristics of Powder Metallurgy Duplex Stainless Steels Developed from 304L and 430L Pre-alloyed Powders;205
26.1;1 Introduction;205
26.2;2 Experimental Procedure;206
26.3;3 Results and Discussions;208
26.3.1;3.1 Density of Duplex Stainless Steel;208
26.3.2;3.2 Microstructure;208
26.3.3;3.3 Tensile Strength and Hardness Evaluation;209
26.4;4 Conclusions;210
26.5;References;210
27;24 Machinability Studies of TiAlN-/AlCrN-Coated and Uncoated Tungsten Carbide Tools on Turning EN25 Alloy Steel;212
27.1;1 Introduction;212
27.2;2 Experimental Details;213
27.3;3 Result and Discussions;214
27.3.1;3.1 Tool Wear Analysis;214
27.3.2;3.2 Surface Roughness Analysis;215
27.3.3;3.3 The Taguchi Method Evaluation Results;217
27.4;4 Conclusion;219
27.5;References;220
28;25 Study on Temperature Indicating Paint for Surface Temperature Measurement—A Review;221
28.1;1 Introduction;221
28.2;2 Global Temperature Measurement Techniques;222
28.2.1;2.1 Discrete Sensor Arrays;222
28.2.2;2.2 Liquid Crystal Thermometers or TLC;222
28.2.3;2.3 IR Thermography;222
28.2.4;2.4 Thermal Phosphors;222
28.3;3 Irreversible Thermal Paints or Temperature Indicating Paints (TIPs);223
28.4;4 Thermal Paint Chemistry;223
28.5;5 Chemistry Behind Colour Transition;224
28.6;6 Calibration Methodology;225
28.7;7 Recent Research Works Using TIP;226
28.8;8 Conclusion;228
28.9;References;228
29;26 Inflight Parameter Estimation Framework for Fixed-Wing UAV;230
29.1;1 Introduction;230
29.2;2 Flight Instrumentation: Airframe Assembly;231
29.3;3 Flight Instrumentation: DAQ System Integration;232
29.4;4 Flight Instrumentation: Selection of Sensors;234
29.5;5 Inflight Test Results;236
29.6;6 Conclusion;236
29.7;References;236
30;27 Experimental Studies on Surface Roughness of H12 Tool Steel in EDM Using Different Tool Materials;238
30.1;1 Introduction;238
30.2;2 Experimental Work;239
30.3;3 Method of Analysis;239
30.3.1;3.1 Taguchi and ANOVA Method;239
30.3.2;3.2 Measurement of Surface Roughness;240
30.4;4 Results and Discussion;240
30.4.1;4.1 Analysis of Surface Roughness;240
30.5;5 Conclusions;242
30.6;References;243
31;28 Effect of Equivalence Ratio on Parameters of Coal-Fired Updraft Gasifier;245
31.1;1 Introduction;245
31.2;2 Mathematical Modeling;246
31.2.1;2.1 Geometry;246
31.2.2;2.2 Assumptions;247
31.2.3;2.3 Discrete Phase Modeling;247
31.2.4;2.4 Chemical Reactions;248
31.2.5;2.5 Boundary Conditions;250
31.2.6;2.6 Numerical Considerations;250
31.3;3 Results and Discussion;250
31.3.1;3.1 Gasification Phenomena;251
31.3.2;3.2 Effect of Equivalence Ratio;252
31.4;4 Conclusion;253
31.5;References;253
32;29 Numerical Analysis of Two-Phase Blood Flow in Idealized Artery with Blockage;254
32.1;1 Introduction;254
32.2;2 Mathematical Modeling;255
32.2.1;2.1 Continuity Equation;255
32.2.2;2.2 Momentum Equation;255
32.2.3;2.3 Blood Rheology;256
32.3;3 Numerical Considerations;256
32.4;4 Results;257
32.5;5 Conclusion;261
32.6;References;261
33;30 Generalized Design of Experiments for Structural Optimization;263
33.1;1 Introduction;263
33.2;2 Pre-optimization Analysis;264
33.3;3 Sensitivity Analysis;265
33.3.1;3.1 Observation from Sensitivity Analysis;266
33.3.2;3.2 Design Points and Response Surfaces;267
33.4;4 Interpolation Model;267
33.4.1;4.1 Multidimensional Bi-section;268
33.5;5 Results and Conclusion;269
33.6;References;270
34;31 Numerical Prediction of Performance of a Double-Acting ?-Type Stirling Engine;271
34.1;1 Introduction;271
34.2;2 Numerical Simulation Methods and Theory;273
34.2.1;2.1 Basic Assumptions;273
34.2.2;2.2 Governing Equations;273
34.2.3;2.3 Porous Medium Theory;274
34.2.4;2.4 Computation Model;275
34.3;3 Numerical Simulation Model;276
34.3.1;3.1 Working Fluid Domain Geometry and Mesh Model;276
34.3.2;3.2 Piston Displacement Function;276
34.3.3;3.3 Boundary Conditions Setup;277
34.3.4;3.4 Charged Mass Setup;277
34.3.5;3.5 Engine Performance Evaluation;277
34.4;4 Simulation Results and Discussion;278
34.4.1;4.1 Baseline Case Results and Discussion;278
34.4.2;4.2 Effects of Heating Temperature and Engine Speed on Engine Performance;279
34.4.3;4.3 Effects of Regenerator’s Porosity on Engine Performance;280
34.5;5 Conclusions;282
34.6;References;282
35;32 Design Optimization, Automation and Testing Analysis of Dust Cleaning Mechanism for Solar Photovoltaic Power Plant;283
35.1;1 Introduction;283
35.2;2 Design Optimizations of Dust Cleaning Mechanism;284
35.3;3 Drawing of Dust Cleaning Mechanism;285
35.4;4 Automation of Dust Cleaning Mechanism;286
35.4.1;4.1 Selection of Electronic and Electrical Components and Brief History;286
35.5;5 Test Setup and Testing;287
35.6;6 Result and Discussion;290
35.6.1;6.1 Energy Required for Dust Cleaning Mechanism;290
35.7;7 Conclusion;292
35.8;References;293
36;33 Optimization of a Dual-Stepped Cone Inlet for Scramjet Applications;294
36.1;1 Introduction;294
36.2;2 Ramp Selections;295
36.2.1;2.1 Ramp 1 Selection;295
36.2.2;2.2 Ramp 2 Selections;295
36.3;3 CFD Analysis;296
36.3.1;3.1 CFD Analysis—Mach 7;297
36.3.2;3.2 Mach 2;297
36.4;4 Conclusion;298
36.5;References;299
37;34 Experimental Investigations for Improving the Strength of Parts Manufactured Using FDM Process;300
37.1;1 Introduction;300
37.1.1;1.1 Fused Deposition Modeling (FDM);300
37.1.2;1.2 Machine Used for FDM Process;301
37.2;2 Materials Used for Printing Test Specimens;302
37.3;3 Experimental Testing;302
37.3.1;3.1 Printing/Preparation of Specimens for Experimental Testing;303
37.3.2;3.2 Tests and Results;303
37.4;4 Gray Relational Analysis (GRA);304
37.5;References;306
38;35 Effects of Wall Thinning Behaviour During Pipe Bending Process—An Experimental Study;307
38.1;1 Introduction;307
38.2;2 Wall Thinning;308
38.2.1;2.1 Control of Wall Thinning;309
38.3;3 Bending at Atmospheric (Cold) and Elevated (Hot) Temperature;309
38.3.1;3.1 Cold Bending;310
38.3.2;3.2 Incremental Hot Bending;311
38.4;4 Results and Discussion;312
38.5;5 Conclusion;312
38.6;Appendix 1: Pipe Bending Terminologies and Types;313
38.7;Types of Pipe Bending;314
38.8;Appendix 2: Pipe Benders;314
38.8.1;Hydraulic Bender;314
38.8.2;Incremental Bender;315
38.9;References;316
39;36 Computational Simulation of Wind Flow Behavior Around a Building Structure;317
39.1;1 Introduction;317
39.2;2 Methodology;318
39.2.1;2.1 Setup Description;318
39.3;3 Numerical Model;319
39.3.1;3.1 Turbulence Model;319
39.3.2;3.2 Computational Setting and Parameters;319
39.4;4 Results;320
39.5;5 Conclusion;321
39.6;References;322
40;37 Numerical Analysis of Bubble Hydrodynamics in a Steam Reactor Chemical Looping Reforming System;324
40.1;1 Introduction;324
40.2;2 Numerical Considerations;326
40.3;3 Results and Discussions;327
40.3.1;3.1 Unsteady and Quasi-steady Bubble Hydrodynamics;328
40.3.2;3.2 Effect of Particle Size of Oxygen Carrier;330
40.4;4 Conclusion;330
40.5;References;331
41;38 Numerical Study of Flow Field Investigation of Air Jet Impingement on Different Solid Block Size;333
41.1;1 Introduction;333
41.2;2 Mathematical Formulation;334
41.2.1;2.1 Problem Description;334
41.2.2;2.2 Governing Equations;335
41.2.3;2.3 Numerical Procedure;335
41.2.4;2.4 Validation Work;335
41.2.5;2.5 Parameters Affecting the Flow Field;336
41.3;3 Results and Discussion;336
41.3.1;3.1 Effect of Re on Flow Field for Block Size 0.75 * 0.75;337
41.3.2;3.2 Effect of Re on Flow Field for Block Size 0.75 * 1.50;337
41.3.3;3.3 Effect of Re on Vortex Center for Block Size 0.75 * 0.75;338
41.3.4;3.4 Effect of Re on Vortex Center for Block Size 0.75 * 1.50;339
41.3.5;3.5 Horizontal Velocity Profile for Different Block Size;339
41.4;4 Conclusion;340
41.5;References;341
42;39 Stress Intensity Factors for a Plate with Slant Edge Crack Built with Rapid Manufacturing Process;342
42.1;1 Introduction;342
42.2;2 Experimentation;343
42.2.1;2.1 Material Description;343
42.2.2;2.2 Fabrication;344
42.2.3;2.3 Testing;345
42.3;3 Finite Element Analysis;345
42.4;4 Result and Discussion;346
42.5;5 Conclusion;349
42.6;References;350
43;40 Design, Analyze, and Develop a Hybrid Silencer for 250 kVA DG Set;352
43.1;1 Introduction;352
43.1.1;1.1 Problem Statement and Objectives;353
43.2;2 Designing of Component;353
43.2.1;2.1 Design for Sound Pressure;353
43.2.2;2.2 Design for Back Pressure;356
43.3;3 Numerical Verification;356
43.3.1;3.1 Sound Pressure;356
43.3.2;3.2 Back Pressure;357
43.3.3;3.3 Inference;358
43.4;4 Results;359
43.5;5 Conclusion;359
43.6;References;359
44;41 Design, Analysis, and Simulation of a Power-Split Device for Hybrid Two-Wheeler;361
44.1;1 Introduction;361
44.2;2 Design of H2W with Power-Split Device;363
44.2.1;2.1 Selection of Base Vehicle;363
44.2.2;2.2 Selection of DC Motor;363
44.2.3;2.3 Design of Epicyclic Gear Train;363
44.2.4;2.4 Clutch Actuation Algorithm;364
44.3;3 Simulation;365
44.4;4 Results;366
44.5;5 Conclusion;367
44.6;6 Future Work;367
44.7;Sec11;367
44.8;Sec12;367
44.9;References;370
45;42 Development of Inhibition System for SIS Process;371
45.1;1 Introduction;371
45.2;2 SIS Machine;372
45.3;3 Inhibition Mechanism Modelling;373
45.4;4 Inhibition Preparation and Comparative Studies;375
45.5;5 Conclusion;375
45.6;References;377
46;43 Finite Element Analysis of Lifting Lugs Under Actual Factory Conditions;378
46.1;1 Introduction;378
46.2;2 Modelling and Calculations;378
46.2.1;2.1 Case Study: Factory Lifting Conditions;381
46.2.2;2.2 Dynamic Considerations;382
46.3;3 Discussion;384
46.4;4 Conclusion;384
46.5;References;384
47;44 Numerical Simulation of High Velocity Impact on Composite Targets Using Advanced Computational Techniques;385
47.1;1 Introduction;385
47.2;2 Methodology;385
47.3;3 Numerical Models;386
47.3.1;3.1 Modelling of Ceramic/Metal Composite System;386
47.4;4 Simulation of High Velocity Impact;386
47.4.1;4.1 STUDY-1: Determining the Ballistic Limit Velocity for Given Target and Projectile;387
47.4.2;4.2 Results;389
47.5;5 Results and Discussions;390
47.5.1;5.1 Simulation of 3D Model Ceramic/Metal Composite Under High Velocity Impact;392
47.5.2;5.2 Simulated Results for 2D Model;393
47.5.3;5.3 Comparison of 2D Model and 3D Model;394
47.6;6 Conclusion;397
47.7;References;397
48;45 Study of Future Refrigerant for Vapor Compression Refrigeration Systems;400
48.1;1 Introduction;400
48.2;2 Ozone Layer Depletion;401
48.3;3 Global Warming Potential;401
48.4;4 History of Refrigerants;401
48.5;5 Industrial Gases as Refrigerants;402
48.6;6 Hydrocarbon Manufacture;402
48.6.1;6.1 Example Processing Steps;403
48.7;7 Ammonia Manufacture;403
48.8;8 CO2 Manufacture;405
48.9;9 Future Refrigerant;405
48.9.1;9.1 Evaluation of Working Fluids in Refrigeration Systems;405
48.9.2;9.2 Exact Meaning of Global Warming Potential (GWP);407
48.9.3;9.3 Designing a Low GWP Molecule;407
48.9.4;9.4 Comparison of HFC Versus HFO;407
48.9.5;9.5 Refrigerant Flammability Classifications;408
48.9.6;9.6 Primary Flammability Parameters;409
48.9.7;9.7 Flammable Property Comparison;409
48.10;10 Optimizing for the Future;409
48.11;11 Low GWP HFO Products for Refrigeration;411
48.12;12 Conclusion;411
48.13;References;412
49;46 Numerical Simulation of Viscous Flow Past Elliptic Cylinder;414
49.1;1 Introduction;414
49.2;2 Numerical Strategy;415
49.3;3 Results and Discussion;416
49.4;4 Conclusion;418
49.5;Acknowledgements;419
49.6;References;419
50;47 Processing and Evaluation of Mechanical Properties of Sisal and Bamboo Chemically Treated Hybrid Composite;420
50.1;1 Introduction;420
50.2;2 Experimental Procedures;421
50.2.1;2.1 Materials and Methods;421
50.2.2;2.2 Testing;422
50.3;3 Results and Discussion;423
50.3.1;3.1 Tensile Test;423
50.3.2;3.2 Impact Test;424
50.3.3;3.3 Flexural Test;425
50.4;4 Conclusion;425
50.5;References;426
51;48 On the Surface Finish Improvement in Hybrid Additive Subtractive Manufacturing Process;427
51.1;1 Introduction;427
51.2;2 Development of HASM Process Set Up;429
51.3;3 Development of Toolpath for HASM;430
51.4;4 Case Study;431
51.5;5 Conclusion;432
51.6;Acknowledgements;433
51.7;References;433
52;49 Impact of Control Unit Gains on Noise Mitigation in Swash Plate Pump Pumping Systems;434
52.1;1 Introduction;434
52.2;2 Axial Piston Pump’s Construction;436
52.3;3 Control Unit;436
52.4;4 Control Unit and Noise;437
52.5;5 Control Strategies;437
52.6;6 Experimental Set-up;439
52.6.1;6.1 The Hydraulic Subsystem;439
52.6.2;6.2 The Control Subsystem;441
52.7;7 Results;442
52.8;8 Conclusion;442
52.9;References;443
53;50 Discussion of Past, Present and Future Perspectives of Refrigerants and Its Future Scope;444
53.1;1 Introduction;444
53.2;2 Refrigerant;445
53.2.1;2.1 Refrigerants Identification by Number and Colour Code;445
53.2.2;2.2 Chlorofluorocarbon (CFC) Refrigerant;445
53.2.3;2.3 Hydrochlorofluorocarbon (HCFC) Refrigerant;446
53.2.4;2.4 Hydrofluorocarbon (HFC) Refrigerant;447
53.2.5;2.5 Natural Refrigerants;449
53.2.6;2.6 Refrigerant Blends (Azeotropic–Zeotropic);450
53.3;3 Future Refrigerant;450
53.3.1;3.1 Comparison Between R22 and R410a;451
53.3.2;3.2 R410a Refrigerant;452
53.4;4 Conclusion;453
53.5;References;453
54;51 Analysis of Dynamic Probing Errors in Measuring Machines;455
54.1;1 Introduction;455
54.2;2 Model Construction;456
54.3;3 Results and Discussions;457
54.3.1;3.1 Analysis with Different Probe Ball Materials;457
54.3.2;3.2 Analysis with Different Stem Materials;458
54.3.3;3.3 Mathematical Expression for Different Stem Materials;460
54.4;4 Conclusions;464
54.5;References;464
55;52 Thrust Prediction Model for Varying Chamber Pressure for a Hypergolic Bipropellant Liquid Rocket Engine;465
55.1;1 Introduction;465
55.2;2 Methodology;465
55.2.1;2.1 Test Setup;466
55.2.2;2.2 Model Formulation;466
55.3;3 Results and Discussion;468
55.3.1;3.1 Generation of Thrust Equation;468
55.3.2;3.2 Thrust Measurement for Validation of Model;469
55.4;4 Conclusion;470
55.5;Acknowledgements;470
55.6;References;470
56;53 Experimental Studies on Different Proportions of CB-Filled Natural Rubber Composites with Precipitated Silica and Silica Gel;471
56.1;1 Introduction;471
56.2;2 Experimental Procedure;472
56.2.1;2.1 Materials and Compound Preparation;472
56.2.2;2.2 Testing of Physical Properties;472
56.2.3;2.3 Morphological Study;474
56.3;3 Results and Discussion;474
56.3.1;3.1 Physical Properties;474
56.3.2;3.2 Morphological Analysis;477
56.4;4 Conclusion;479
56.5;References;479
57;54 Fuzzy Logic Simulation for Automatic Speed Control System;481
57.1;1 Introduction;481
57.2;2 Mathematical Calculations;482
57.2.1;2.1 Mathematical Calculation for Mechanical Braking Torque;482
57.2.2;2.2 Let Us Apply Same Concept and Formulas to Suzuki Ciaz Vehicle;483
57.2.3;2.3 Apply This Mechanical Braking Torque Values in Electromagnetic Braking Torque Formula;483
57.3;3 Appling Fuzzy Logic;485
57.3.1;3.1 Grouping of Fuzzy Values into Triangular Membership Function;485
57.3.2;3.2 Forming into Sub-iterations;486
57.3.3;3.3 Forming into Fuzzy Sets;486
57.4;4 Forming of Fuzzy Rules in LabVIEW Software;486
57.5;5 Input/output Values for Triangular Membership Function in LabVIEW Software;487
57.6;6 Output Verification;487
57.6.1;6.1 Verification of Manually Calculated Values to LabVIEW Fuzzy Logic Controller Output;490
57.7;7 Conclusion;490
57.8;References;491
58;55 A Review of Contemporary Research on Root Canal Obturation and Related Quality Assessment Techniques;492
58.1;1 Introduction;492
58.2;2 Contemporary Review and Comparison of Root Canal Obturation Techniques;493
58.2.1;2.1 Classification of Root Canal Obturation Techniques [2];493
58.2.2;2.2 Comparison of Root Canal Obturation Techniques;494
58.3;3 Consultation with Expert of Endodontic and Design Engineering;495
58.4;4 Contemporary Review of Micro-leakage Studies and Mechanical Sealing;496
58.5;5 Micro-leakage Evaluation, Quality Assessment Techniques, and Comparison;498
58.5.1;5.1 Micro-leakage Evaluation and Quality Assessment Techniques;498
58.5.2;5.2 Comparison of Micro-leakage Evaluation and Quality Assessment Techniques;501
58.6;6 Most Recent Endodontic Researches;503
58.7;7 Discussion;504
58.8;Acknowledgments;505
58.9;References;505
59;56 Adaptive Fault Tolerance Flight Controller for Aircraft Actuator Failure;507
59.1;1 Introduction;507
59.2;2 Aircraft Model;508
59.3;3 Flight Controller Design;509
59.4;4 Simulation;510
59.5;5 Conclusion;512
59.6;References;515
60;Author Index;516


Dr. U. Chandrasekhar
is the pro vice chancellor of Vel Tech Dr.RR & Dr.SR Technical University, Chennai. He was director of the Engineering Staff College of India (ESCI), an autonomous organ of The Institution of Engineers (India), and prior to that he was an additional director at the Gas Turbine Research Establishment, a Ministry of Defence R&D organization. For the past 26 years, he has been involved in design, analysis, prototyping, rapid manufacturing, and testing of aero gas turbine engines. He set up the first-ever rapid prototyping laboratory in the country. He has received a commendation medal from the scientific advisor to the defence minister in recognition of his research efforts. He received his B.E. in Mechanical Engineering from NIT, Suratkal; M.Tech. in Design Stream from IIT, Madras; and his Ph.D. from VTU. For his academic excellence at IIT Madras, he received an award from the former president of India, Dr. A. P. J. Abdul Kalam. He trained RP and sensor technologies in Germany, the UK and Belgium. He is currently leading a critical technology development project on high-temperature thin film sensors in collaboration with NRC, Canada. He serves on the council of the Institution of Engineers and National Design and Research Forum. He was also chosen to represent India in the Young Leaders Convention of World Federation of Engineering Organisations at Geneva. He has been invited by several national and international professional bodies as the keynote speaker on advanced prototyping and sensor technologies. 
Dr. Lung-Jieh Yang
received his M.S. degree from Tamkang University, Taiwan in 1991 and Ph.D. degree from the Institute of Applied Mechanics, National Taiwan University in 1997. He was a visiting associate of Electrical Engineering, Caltech, USA from 2000 to 2001. He is currently a professor at the Department of Mechanical & Electromechanical Engineering and the director of the Instrument & Experiment Center at Tamkang University. He is also a member of IEEE and AIAA. His current research interests include flapping micro-aerial-vehicles (MAVs) and gelatin MEMS technology. His research areas are polymer composites, nanomaterials, high-temperature foams, experimental mechanics, sensors for health monitoring and energy harvesting. 
Dr. S. Gowthaman
is the director of R&D at Vel Tech Dr.RR & Dr.SR University and associate professor at the Department of Mechanical Engineering. He received his B.E. in Mechanical Engineering from Bharathidasan University (Shanmugha College of Engineering) and M.S. and Ph.D. in Mechanical Engineering from North Carolina A&T State University, USA. His research activities include polymer-based composite materials, experimental mechanics, nano-engineering and advanced materials providing solutions for structural and material needs in various applications. Before joining Vel Tech University in 2013, Dr. Gowthaman worked at Nanyang Technological University (NTU), Singapore and the Center for Aviation Safety (CAS) at NC A&T State University (USA). He has worked in research projects sponsored by various agencies like NASA (USA), US Army (USA), ONR (USA), Wright Materials Research (USA), DSTA (Singapore), DST-SERB (India), DRDO-ERIPR (India) and DST-TDT (India). He has collaborated and is collaborating with a number of national and international institutes and research labs. He has published more than 30 research papers in international journals and conference proceedings. He is a member of several committees and societies including AIAA Materials Technical Committee (USA), and serves as a reviewer for various journals, including Composites Part A, Journal of Reinforced Plastics and Composites, AIAA Journal and IE Springer Journal, and is a member of the editorial boards for international conferences like I-DAD and ICAM-3D. Dr. Gowthaman has received several awards from NC A&T State University (USA) and Bharathidasan University for his academic and research achievements, including a NTU (Singapore) Post Doctorate Fellowship and DST-SERB (India) Early Career Research project award.


Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.