Chakraverty / Jena | Computational Fractional Dynamical Systems | Buch | 978-1-119-69695-7 | sack.de

Buch, Englisch, 272 Seiten, Format (B × H): 221 mm x 286 mm, Gewicht: 1052 g

Chakraverty / Jena

Computational Fractional Dynamical Systems

Fractional Differential Equations and Applications
1. Auflage 2022
ISBN: 978-1-119-69695-7
Verlag: Wiley

Fractional Differential Equations and Applications

Buch, Englisch, 272 Seiten, Format (B × H): 221 mm x 286 mm, Gewicht: 1052 g

ISBN: 978-1-119-69695-7
Verlag: Wiley


Computational Fractional Dynamical Systems

A rigorous presentation of different expansion and semi-analytical methods for fractional differential equations

Fractional differential equations, differential and integral operators with non-integral powers, are used in various science and engineering applications. Over the past several decades, the popularity of the fractional derivative has increased significantly in diverse areas such as electromagnetics, financial mathematics, image processing, and materials science. Obtaining analytical and numerical solutions of nonlinear partial differential equations of fractional order can be challenging and involve the development and use of different methods of solution.

Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications presents a variety of computationally efficient semi-analytical and expansion methods to solve different types of fractional models. Rather than focusing on a single computational method, this comprehensive volume brings together more than 25 methods for solving an array of fractional-order models. The authors employ a rigorous and systematic approach for addressing various physical problems in science and engineering. - Covers various aspects of efficient methods regarding fractional-order systems
- Presents different numerical methods with detailed steps to handle basic and advanced equations in science and engineering
- Provides a systematic approach for handling fractional-order models arising in science and engineering

- Incorporates a wide range of methods with corresponding results and validation

Computational Fractional Dynamical Systems: Fractional Differential Equations and Applications is an invaluable resource for advanced undergraduate students, graduate students, postdoctoral researchers, university faculty, and other researchers and practitioners working with fractional and integer order differential equations.

Chakraverty / Jena Computational Fractional Dynamical Systems jetzt bestellen!

Weitere Infos & Material


Preface

Acknowledgments

About the Authors Introduction to Fractional Calculus

1.1. Introduction

1.2. Birth of fractional calculus

1.3. Useful mathematical functions 1.3.1. The gamma function 1.3.2. The beta function 1.3.3. The Mittag-Leffler function 1.3.4. The Mellin-Ross function 1.3.5. The Wright function 1.3.6. The error function 1.3.7. The hypergeometric function

1.3.8. The H-function

1.4. Riemann–Liouville fractional integral and derivative

1.5. Caputo fractional derivative

1.6. Grünwald-Letnikov fractional derivative and integral

1.7. Riesz fractional derivative and integral

1.8. Modified Riemann-Liouville derivative 1.9. Local fractional derivative

1.9.1. Local fractional continuity of a function

1.9.2. Local fractional derivative References Recent Trends in Fractional Dynamical Models and Mathematical Methods

2.1. Introduction

2.2. Fractional calculus: A generalization of integer-order calculus

2.3. Fractional derivatives of some functions and their graphical illustrations

2.4.  Applications of fractional calculus

2.4.1. N.H. Abel and Tautochronous problem

2.4.2. Ultrasonic wave propagation in human cancellous bone

2.4.3. Modeling of speech signals using fractional calculus

2.4.4. Modeling the cardiac tissue electrode interface using fractional calculus

2.4.5. Application of fractional calculus to the sound waves propagation in rigid porous Materials

2.4.6. Fractional calculus for lateral and longitudinal control of autonomous vehicles

2.4.7. Application of fractional calculus in the theory of viscoelasticity

2.4.8. Fractional differentiation for edge detection

2.4.9. Wave propagation in viscoelastic horns using a fractional calculus rheology model

2.4.10. Application of fractional calculus to fluid mechanics

2.4.11. Radioactivity, exponential decay and population growth

2.4.12. The Harmonic oscillator

2.5. Overview of some analytical/numerical methods

2.5.1. Fractional Adams–Bashforth/Moulton methods

2.5.2. Fractional Euler method

2.5.3. Finite difference method

2.5.4. Finite element method

2.5.5. Finite volume method

2.5.6. Meshless method

2.5.7. Reproducing kernel Hilbert space method

2.5.8. Wavelet method

2.5.9. The Sine-Gordon expansion method

2.5.10. The Jacobi elliptic equation method

2.5.11. The generalized Kudryashov method References Adomian Decomposition Method (ADM)

3.1.  Introduction

3.2. Basic Idea of ADM

3.3. Numerical Examples References Adomian Decomposition Transform Method

4.1. Introduction

4.2. Transform methods for the Caputo sense derivatives

4.3. Adomian decomposition Laplace transform method (ADLTM)

4.4. Adomian decomposition Sumudu transform method (ADSTM)

4.5. Adomian decomposition Elzaki transform method (ADETM)

4.6. Adomian decomposition Aboodh transform method (ADATM)

4.7. Numerical Examples

4.7.1. Implementation of ADLTM

4.7.2. Implementation of ADSTM

4.7.3. Implementation of ADETM

4.7.4. Implementation of ADATM References Homotopy Perturbation Method (HPM)

5.1. Introduction

5.2. Procedure of HPM

5.3. Numerical examples References Homotopy Perturbation Transform Method

6.1. Introduction

6.2. Transform methods for the Caputo sense derivatives

6.3. Homotopy perturbation Laplace transform method (HPLTM)

6.4. Homotopy perturbation Sumudu transform method (HPSTM)

6.5. Homotopy perturbation Elzaki transform method (HPETM)

6.6. Homotopy perturbation Aboodh transform method (HPATM)

6.7. Numerical Examples

6.7.1. Implementation of HPLTM

6.7.2. Implementation of HPSTM

6.7.3. Implementation of HPETM

6.7.4. Implementation of HPATM References Fractional Differential Transform Method

7.1. Introduction

7.2. Fractional differential transform method

7.3. Illustrative Examples References Fractional Reduced Differential Transform Method

8.1. Introduction

8.2. Description of FRDTM

8.3. Numerical Examples References Variational Iterative Method

9.1. Introduction

9.2.  Procedure for VIM

9.3. Examples References  Method of Weighted Residuals  10.1. Introduction 10.2. Collocation method 10.3. Least-square method 10.4. Galerkin method 10.5. Numerical Examples References  Boundary Characteristics Orthogonal Polynomials  11.1. Introduction  11.2. Gram–Schmidt orthogonalization procedure  11.3. Generation of BCOPs  11.4.  Galerkin method with BCOPs  11.5. Least-Square method with BCOPs  11.6. Application Problems References  Residual Power Series Method

12.1. Introduction

12.2. Theorems and lemma related to RPSM

12.3. Basic idea of RPSM

12.4. Convergence Analysis

12.5. Examples References Homotopy Analysis Method

13.1. Introduction

13.2. Theory of homotopy analysis method

13.3. Convergence theorem of HAM

13.4. Test Examples References Homotopy Analysis Transform Method

14.1. Introduction 14.2. Transform methods for the Caputo sense derivative 14.3. Homotopy analysis Laplace transform method (HALTM) 14.4. Homotopy analysis Sumudu transform method (HASTM) 14.5. Homotopy analysis Elzaki transform method (HAETM) 14.6. Homotopy analysis Aboodh transform method (HAATM) 14.7. Numerical Examples 14.7.1. Implementation of HALTM 14.7.2. Implementation of HASTM 14.7.3. Implementation of HAETM 14.7.4. Implementation of HAATM  References  q-Homotopy Analysis Method  15.1. Introduction  15.2. Theory of q-HAM  15.3. Illustrative Examples References q-Homotopy Analysis transform Method 16.1. Introduction 16.2. Transform methods for the Caputo sense derivative 16.3. q-homotopy analysis Laplace transform method (q-HALTM) 16.4. q-homotopy analysis Sumudu transform method (q-HASTM) 16.5. q-homotopy analysis Elzaki transform method (q-HAETM) 16.6. q-homotopy analysis Aboodh transform method (q-HAATM) 16.7. Test Problems 16.7.1. Implementation of q-HALTM 16.7.2. Implementation of q-HASTM  16.7.3. Implementation of q-HAETM 16.7.4. Implementation of q-HAATM References (G'/G)-Expansion Method 17.1. Introduction 17.2. Description of the (G'/G)-expansion method  17.3. Application Problems References (G’/G^2)-Expansion Method 18.1. Introduction  18.2. Description of the (G’/G^2)-expansion method  18.3. Numerical Examples References (G’/G,1/G)-Expansion Method 19.1. Introduction 19.2. Algorithm of the (G’/G,1/G)-expansion method 19.3. Illustrative Examples References  The modified simple equation method  20.1. Introduction  20.2. Procedure of the modified simple equation method  20.3. Application Problems References  Sine-Cosine Method  21.1. Introduction  21.2. Details of Sine-Cosine method  21.3. Numerical Examples References


Snehashish Chakraverty, Senior Professor, Department of Mathematics (Applied Mathematics Group), National Institute of Technology Rourkela, Odisha, India.

Rajarama Mohan Jena, Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.

Subrat Kumar Jena, Senior Research Fellow, Department of Mathematics, National Institute of Technology Rourkela, Odisha, India.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.