Chaki / Ucar | Current Applications of Deep Learning in Cancer Diagnostics | Buch | 978-1-032-22319-3 | sack.de

Buch, Englisch, 187 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 272 g

Chaki / Ucar

Current Applications of Deep Learning in Cancer Diagnostics


1. Auflage 2024
ISBN: 978-1-032-22319-3
Verlag: Taylor & Francis Ltd (Sales)

Buch, Englisch, 187 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 272 g

ISBN: 978-1-032-22319-3
Verlag: Taylor & Francis Ltd (Sales)


This book examines deep learning-based approaches in the field of cancer diagnostics, as well as pre-processing techniques, which are essential to cancer diagnostics. Topics include introduction to current applications of deep learning in cancer diagnostics, pre-processing of cancer data using deep learning, review of deep learning techniques in oncology, overview of advanced deep learning techniques in cancer diagnostics, prediction of cancer susceptibility using deep learning techniques, prediction of cancer reoccurrence using deep learning techniques, deep learning techniques to predict the grading of human cancer, different human cancer detection using deep learning techniques, prediction of cancer survival using deep learning techniques, complexity in the use of deep learning in cancer diagnostics, and challenges and future scopes of deep learning techniques in oncology.

Chaki / Ucar Current Applications of Deep Learning in Cancer Diagnostics jetzt bestellen!

Zielgruppe


Academic, Postgraduate, and Professional

Weitere Infos & Material


1. Contemporary Trends in the Early Detection and Diagnosis of Human Cancers Using Deep Learning Techniques, 2. Cancer Data Pre-Processing Techniques, 3. A Survey on Deep Learning Techniques for Breast, Leukemia and Cervical Cancer Prediction, 4. An Optimized Deep Learning Technique for Detecting Lung Cancer from CT Images, 5. Brain Tumor Segmentation Utilizing MRI Multimodal Images with Deep Learning, 6. Detection and Classification of Brain Tumors Using Light-Weight Convolutional Neural Network, 7. Parallel Dense Skip Connected CNN Approach for Brain Tumor Classification, 8. Liver Tumor Segmentation Using Deep Learning Neural Networks, 9. Deep Learning Algorithms for Classification and Prediction of Acute Lymphoblastic Leukemia, 10. Cervical Pap Smear Screening and Cancer Detection Using Deep Neural Network, 11. Cancer Detection Using Deep Neural Network: Differentiation of Squamous Carcinoma Cells in Oral Pathology, 12. Challenges and Future Scopes in Current Applications of Deep Learning in Human Cancer Diagnostics


Jyotismita Chaki, PhD, is an Associate Professor at School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, India.

Aysegul Ucar, PhD, is a Professor in Department of Mechatronics Engineering, Firat University, Turkey.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.