Buch, Englisch, 284 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g
Reihe: Universitext
Buch, Englisch, 284 Seiten, Paperback, Format (B × H): 155 mm x 235 mm, Gewicht: 435 g
Reihe: Universitext
ISBN: 978-0-387-94357-2
Verlag: Springer
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Zero Preliminaries.- 1. Sets.- 2. Relations.- 3. Countable Sets.- 4. Real Numbers.- 5. Topological Concepts in ?.- 6. Continuous Functions.- 7. Metric Spaces.- I The Rieman Integral.- 1. The Cauchy Integral.- 2. Fourier Series and Dirichlet’s Conditions.- 3. The Riemann Integral.- 4. Sets of Measure Zero.- 5. Existence of the Riemann Integral.- 6. Deficiencies of the Riemann Integral.- II The Lebesgue Integral: Riesz Method.- 1. Step Functions and Their Integrals.- 2. Two Fundamental Lemmas.- 3. The Class L+.- 4. The Lebesgue Integral.- 5. The Beppo Levi Theorem—Monotone Convergence Theorem.- 6. The Lebesgue Theorem—Dominated Convergence Theorem.- 7. The Space L1.- Henri Lebesgue.- Frigyes Riesz.- III Lebesgue Measure.- 1. Measurable Functions.- 2. Lebesgue Measure.- 3. ?-Algebras and Borel Sets.- 4. Nonmeasurable Sets.- 5. Structure of Measurable Sets.- 6. More About Measurable Functions.- 7. Egoroff’s Theorem.- 8. Steinhaus’ Theorem.- 9. The Cauchy Functional Equation.- 10. Lebesgue Outer and Inner Measures.- IV Generalizations.- 1. The Integral on Measurable Sets.- 2. The Integral on Infinite Intervals.- 3. Lebesgue Measure on ?.- 4. Finite Additive Measure: The Banach Measure Problem.- 5. The Double Lebesgue Integral and the Fubini Theorem.- 6. The Complex Integral.- V Differentiation and the Fundamental Theorem of Calculus.- 1. Nowhere Differentiable Functions.- 2. The Dini Derivatives.- 3. The Rising Sun Lemma and Differentiability of Monotone Functions.- 4. Functions of Bounded Variation.- 5. Absolute Continuity.- 6. The Fundamental Theorem of Calculus.- VI The LP Spaces and the Riesz-Fischer Theorem.- 1. The LP Spaces (1 ? p < ?).- 2. Approximations by Continuous Functions.- 3. The Space L?.- 4. The lp Spaces (1 ? p ? ?).- 5. HilbertSpaces.- 6. The Riesz-Fischer Theorem.- 7. Orthonormalization.- 8. Completeness of the Trigonometric System.- 9. Isoperimetric Problem.- 10. Remarks on Fourier Series.- Appendix The Development of the Notion of the Integral by Henri Lebesgue.- Notation.