E-Book, Englisch, 244 Seiten
Celko Joe Celko's Complete Guide to NoSQL
1. Auflage 2013
ISBN: 978-0-12-407220-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
What Every SQL Professional Needs to Know about Non-Relational Databases
E-Book, Englisch, 244 Seiten
ISBN: 978-0-12-407220-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark
Joe Celko served 10 years on ANSI/ISO SQL Standards Committee and contributed to the SQL-89 and SQL-92 Standards. Mr. Celko is author a series of books on SQL and RDBMS for Elsevier/MKP. He is an independent consultant based in Austin, Texas. He has written over 1200 columns in the computer trade and academic press, mostly dealing with data and databases.
Autoren/Hrsg.
Weitere Infos & Material
1;Front Cover;1
2;Joe Celko's Complete Guide to NoSQL: What Every SQL Professional Needs to Know about NonRelational Databases;4
3;Copyright;5
4;Dedication;6
5;Contents;8
6;About the Author;16
7;Introduction;18
8;Chapter 1: NoSQL and Transaction Processing;22
8.1;Introduction;22
8.2;1.1. Databases Transaction Processing in the Batch Processing World;22
8.3;1.2. Transaction Processing in the Disk Processing World;23
8.4;1.3. ACID;24
8.5;1.4. Pessimistic Concurrency in Detail;26
8.5.1;1.4.1. Isolation Levels;27
8.5.2;1.4.2. Proprietary Isolation Levels;29
8.6;1.5. CAP Theorem;31
8.7;1.6. BASE;32
8.8;1.7. Server-side Consistency;34
8.9;1.8. Error Handling;34
8.10;1.9. Why SQL Does Not Work Here;35
8.11;Concluding Thoughts;35
8.12;References;35
9;Chapter 2: Columnar Databases;36
9.1;Introduction;36
9.2;2.1. History;37
9.3;2.2. How It Works;42
9.4;2.3. Query Optimizations;43
9.5;2.4. Multiple Users and Hardware;43
9.6;2.5. Doing an ALTER Statement;45
9.7;2.6. Data Warehouses and Columnar Databases;45
9.8;Concluding Thoughts;46
9.9;Reference;46
10;Chapter 3: Graph Databases;48
10.1;Introduction;48
10.2;3.1. Graph Theory Basics;49
10.2.1;3.1.1. Nodes;49
10.2.2;3.1.2. Edges;50
10.2.3;3.1.3. Graph Structures;51
10.3;3.2. RDBMS Versus Graph Database;52
10.4;3.3. Six Degrees of Kevin Bacon Problem;52
10.4.1;3.3.1. Adjacency List Model for General Graphs;52
10.4.2;3.3.2. Covering Paths Model for General Graphs;56
10.4.3;3.3.3. Real-World Data Has Mixed Relationships;59
10.5;3.4. Vertex Covering;61
10.6;3.5. Graph Programming Tools;63
10.6.1;3.5.1. Graph Databases;63
10.6.2;3.5.2. Graph Languages;64
10.6.2.1;SPARQL;64
10.6.2.2;SPASQL;65
10.6.2.3;Gremlin;65
10.6.2.4;Cypher (NEO4j);65
10.6.2.5;Trends;67
10.7;Concluding Thoughts;67
10.8;References;67
11;Chapter 4: MapReduce Model;68
11.1;Introduction;68
11.2;4.1. Hadoop Distributed File System;70
11.3;4.2. Query Languages;71
11.3.1;4.2.1. Pig Latin;71
11.3.2;4.2.2. Hive and Other Tools;81
11.4;Concluding Thoughts;83
11.5;References;83
12;Chapter 5: Streaming Databases and Complex Events;84
12.1;Introduction;84
12.2;5.1. Generational Concurrency Models;85
12.2.1;5.1.1. Optimistic Concurrency;85
12.2.2;5.1.2. Isolation Levels in Optimistic Concurrency;86
12.3;5.2. Complex Event Processing;88
12.3.1;5.2.1. Terminology for Event Processing;89
12.3.2;5.2.2. Event Processing versus State Change Constraints;91
12.3.3;5.2.3. Event Processing versus Petri Nets;92
12.4;5.3. Commercial Products;94
12.4.1;5.3.1. StreamBase 1;94
12.4.2;5.3.2. Kx 2;97
12.5;Concluding Thoughts;100
12.6;References;100
13;Chapter 6: Key–Value Stores;102
13.1;Introduction;102
13.2;6.1. Schema Versus no Schema;102
13.3;6.2. Query Versus Retrieval;103
13.4;6.3. Handling Keys;103
13.4.1;6.3.1. Berkeley DB;104
13.4.2;6.3.2. Access by Tree Indexing or Hashing;105
13.5;6.4. Handling Values;105
13.5.1;6.4.1. Arbitrary Byte Arrays;105
13.5.2;6.4.2. Small Files of Known Structure;106
13.6;6.5. Products;107
13.7;Concluding Thoughts;109
14;Chapter 7: Textbases;110
14.1;Introduction;110
14.2;7.1. Classic Document Management Systems;110
14.2.1;7.1.1. Document Indexing and Storage;111
14.2.2;7.1.2. Keyword and Keyword in Context;111
14.2.3;7.1.3. Industry Standards;113
14.2.3.1;Contextual Query Language;113
14.2.3.2;Commercial Services and Products;115
14.2.3.3;Regular Expressions;116
14.3;7.2. Text Mining and Understanding;117
14.3.1;7.2.1. Semantics versus Syntax;118
14.3.2;7.2.2. Semantic Networks;119
14.4;7.3. Language Problem;120
14.4.1;7.3.1. Unicode and ISO Standards;121
14.4.2;7.3.2. Machine Translation;121
14.5;Concluding Thoughts;122
14.6;References;123
15;Chapter 8: Geographical Data;124
15.1;Introduction;124
15.2;8.1. GIS Queries;126
15.2.1;8.1.1. Simple Location;126
15.2.2;8.1.2. Simple Distance;126
15.2.3;8.1.3. Find Quantities, Densities, and Contents within an Area;126
15.2.4;8.1.4. Proximity Relationships;127
15.2.5;8.1.5. Temporal Relationships;127
15.3;8.2. Locating Places;127
15.3.1;8.2.1. Longitude and Latitude;128
15.3.2;8.2.2. Hierarchical Triangular Mesh;129
15.3.3;8.2.3. Street Addresses;132
15.3.4;8.2.4. Postal Codes;133
15.3.5;8.2.5. ZIP Codes;133
15.3.6;8.2.6. Canadian Postal Codes;134
15.3.7;8.2.7. Postcodes in the United Kingdom;135
15.3.7.1;Postcode Formats;135
15.3.7.2;Greater London Postcodes;136
15.4;8.3. SQL Extensions for GIS;137
15.5;Concluding Thoughts;137
15.6;References;138
16;Chapter 9: Big Data and Cloud Computing;140
16.1;Introduction;140
16.2;9.1. Objections to Big Data and the Cloud;142
16.2.1;9.1.1. Cloud Computing is a Fad;142
16.2.2;9.1.2. Cloud Computing is Not as Secure as in-house Data Servers;143
16.2.3;9.1.3. Cloud Computing is Costly;143
16.2.4;9.1.4. Cloud Computing is Complicated;143
16.2.5;9.1.5. Cloud Computing is Meant for Big Companies;143
16.2.6;9.1.6. Changes Are Only Technical;144
16.2.7;9.1.7. If the Internet Goes Down, the Cloud Becomes Useless;145
16.3;9.2. Big Data and Data Mining;145
16.3.1;9.2.1. Big Data for Nontraditional Analysis;146
16.3.2;9.2.2. Big Data for Systems Consolidation;147
16.4;Concluding Thoughts;148
16.5;References;149
17;Chapter 10: Biometrics, Fingerprints, and Specialized Databases;150
17.1;Introduction;150
17.2;10.1. Naive Biometrics;151
17.3;10.2. Fingerprints;153
17.3.1;10.2.1. Classification;153
17.3.2;10.2.2. Matching;154
17.3.3;10.2.3. NIST Standards;155
17.4;10.3. DNA Identification;157
17.4.1;10.3.1. Basic Principles and Technology;158
17.5;10.4. Facial Databases;159
17.5.1;10.4.1. History;160
17.5.2;10.4.2. Who Is Using Facial Databases;162
17.5.3;10.4.3. How Good Is It?;163
17.6;Concluding Thoughts;165
17.7;References;165
18;Chapter 11: Analytic Databases;166
18.1;Introduction;166
18.2;11.1. Cubes;166
18.3;11.2. Dr. Codd’s OLAP Rules;167
18.3.1;11.2.1. Dr. Codd’s Basic Features;168
18.3.2;11.2.2. Special Features;170
18.3.3;11.2.3. Reporting Features;171
18.3.4;11.2.4. Dimension Control;171
18.4;11.3. MOLAP;172
18.5;11.4. ROLAP;172
18.6;11.5. HOLAP;173
18.7;11.6. OLAP Query Languages;173
18.8;11.7. Aggregation Operators in SQL;174
18.8.1;11.7.1. GROUP BY GROUPING SET;174
18.8.2;11.7.2. ROLLUP;175
18.8.3;11.7.3. CUBE;177
18.8.4;11.7.4. Notes about Usage;178
18.9;11.8. OLAP Operators in SQL;178
18.9.1;11.8.1. OLAP Functionality;179
18.9.1.1;Row Numbering;179
18.9.1.2;RANK and DENSE_RANK;181
18.9.1.3;Window Clause;183
18.9.2;11.8.2. NTILE(n);185
18.9.3;11.8.3. Nesting OLAP Functions;186
18.9.4;11.8.4. Sample Queries;186
18.10;11.9. Sparseness in Cubes;187
18.10.1;11.9.1. Hypercube;188
18.10.2;11.9.2. Dimensional Hierarchies;189
18.10.3;11.9.3. Drilling and Slicing;191
18.11;Concluding Thoughts;191
18.12;References;192
19;Chapter 12: Multivalued or NFNF Databases;194
19.1;Introduction;194
19.2;12.1. Nested File Structures;194
19.3;12.2. Multivalued Systems;197
19.4;12.3. NFNF Databases;199
19.5;12.4. Existing Table-Valued Extensions;203
19.5.1;12.4.1. Microsoft SQL Server;203
19.5.2;12.4.2. Oracle Extensions;203
19.6;Concluding Thoughts;205
20;Chapter 13: Hierarchical and Network Database Systems;206
20.1;Introduction;206
20.2;13.1. Types of Databases;206
20.3;13.2. Database History;207
20.3.1;13.2.1. DL/I;208
20.3.2;13.2.2. Control Blocks;209
20.3.3;13.2.3. Data Communications;209
20.3.4;13.2.4. Application Programs;209
20.3.5;13.2.5. Hierarchical Databases;210
20.3.6;13.2.6. Strengths and Weaknesses;210
20.4;13.3. Simple Hierarchical Database;211
20.4.1;13.3.1. Department Database;213
20.4.2;13.3.2. Student Database;213
20.4.3;13.3.3. Design Considerations;213
20.4.4;13.3.4. Example Database Expanded;214
20.4.5;13.3.5. Data Relationships;215
20.4.6;13.3.6. Hierarchical Sequence;216
20.4.7;13.3.7. Hierarchical Data Paths;217
20.4.8;13.3.8. Database Records;218
20.4.9;13.3.9. Segment Format;219
20.4.10;13.3.10. Segment Definitions;220
20.5;13.4. Summary;220
20.6;Concluding Thoughts;221
20.7;References;222
21;Glossary;224
22;Index;238