E-Book, Englisch, 293 Seiten
Cavallucci TRIZ - The Theory of Inventive Problem Solving
1. Auflage 2017
ISBN: 978-3-319-56593-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Current Research and Trends in French Academic Institutions
E-Book, Englisch, 293 Seiten
ISBN: 978-3-319-56593-4
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
The work presented here is generally intended for engineers, educators at all levels, industrialists, managers, researchers and political representatives. Offering a snapshot of various types of research conducted within the field of TRIZ in France, it represents a unique resource.
?It has been two decades since the TRIZ theory originating in Russia spread across the world. Every continent adopted it in a different manner - sometimes by glorifying its potential and its perspectives (the American way); sometimes by viewing it with mistrust and suspicion (the European way); and sometimes by adopting it as-is, without questioning it further (the Asian way). However, none of these models of adoption truly succeeded.
Today, an assessment of TRIZ practices in education, industry and research is necessary. TRIZ has expanded to many different scientific disciplines and has allowed young researchers to reexamine the state of research in their field. To this end, a call was sent out to all known francophone research laboratories producing regular research about TRIZ. Eleven of them agreed to send one or more of their postdoctoral researchers to present their work during a seminar, regardless of the maturity or completeness of their efforts. It was followed by this book project, presenting one chapter for every current thesis in order to reveal the breadth, the richness and the perspectives that research about the TRIZ theory could offer our society. The topics dealt with e.g. the development of new methods inspired by TRIZ, educational practices, and measuring team impact.
Denis Cavallucci is Full Professor in Engineering of Innovation at the National Institute of Applied Science in Strasbourg, France. He is the head of the research team CSIP/DISIP (Design, Information Systems and Inventive Processes) which investigates theories, methods, and tools for formalizing inventive activities within industrial organizations. Denis Cavallucci is co-founder and past president of the European TRIZ Association ETRIA. Among his current research goals is to integrate artificial intelligence into design activities to systematize inventive processes.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;12
3;Chapter 1: Finding Innovative Technical Solutions in Patents Through Improved Evolution Trends;14
3.1;1.1 Introduction;14
3.2;1.2 State of the Art: Anticipating the Evolution of Technical Systems;15
3.2.1;1.2.1 Altshuller´s Evolution Laws;16
3.2.2;1.2.2 Polovinkin´s Rules;17
3.2.3;1.2.3 Design Heuristics;20
3.2.4;1.2.4 Patent Exploitation Through the Evolution Laws of Technical Systems;22
3.2.4.1;1.2.4.1 Patent Classification According to the TRIZ Inventive Principles;24
3.2.4.2;1.2.4.2 Applying TRIZ Trends for Technology Transfer and Technology Forecasting;25
3.3;1.3 Selecting, Analyzing, and Classifying Pertinent Patents for Patent Exploitation;26
3.3.1;1.3.1 General Description of the IMC Problem-Solving Methodology;27
3.3.2;1.3.2 Formatting Patents for Exploitation: Discovery Matrix and the Timeline Classification;29
3.4;1.4 A Proposition of Evolution Trends;30
3.4.1;1.4.1 Rules of the Art of Engineering (Engineering Best Practices);31
3.4.2;1.4.2 Introduction of the Eight Cards of Evolution Trends;32
3.5;1.5 Application Case: Deep Offshore Biphasic Separator;37
3.5.1;1.5.1 Context of the Problem;37
3.5.2;1.5.2 Structuring the Discovery Matrix and the Timeline Classification;38
3.5.2.1;1.5.2.1 Discovery Matrix Columns and Lines Structure;38
3.5.2.2;1.5.2.2 Discovery Matrix Timeline Classification;38
3.5.3;1.5.3 Exploiting the Discovery Matrix by Means of Evolution Trends;40
3.5.3.1;1.5.3.1 Analysis of Helical Systems (Branch 1);43
3.5.3.2;1.5.3.2 Analysis of Plate Systems (Branch 3);45
3.5.3.3;1.5.3.3 Analysis of Hybrid Systems (Branch 4);48
3.5.4;1.5.4 Innovation Through the First Findings;51
3.5.4.1;1.5.4.1 Incremental Innovation: A Hybrid Solution;51
3.5.4.2;1.5.4.2 Breakthrough Innovation: Future Ideas;52
3.6;1.6 Conclusion and Discussion;53
3.7;References;53
4;Chapter 2: Automated Extraction of Knowledge Useful to Populate Inventive Design Ontology from Patents;56
4.1;2.1 Introduction;56
4.2;2.2 The Target Description;58
4.2.1;2.2.1 TRIZ and IDM Knowledge Model;58
4.2.2;2.2.2 IDM and Its Knowledge Model;59
4.2.2.1;2.2.2.1 The Inventive Design Method;59
4.2.2.2;2.2.2.2 IDM Ontology;59
4.2.3;2.2.3 The Nature of Patent Documents;60
4.3;2.3 An Overview of Patent Mining Tools;61
4.4;2.4 The Proposed Methodology;61
4.4.1;2.4.1 The Implementation;62
4.4.2;2.4.2 The Linguistic Analysis;63
4.4.3;2.4.3 The Linguistic Marker Selection;65
4.5;2.5 Results and Discussion;68
4.5.1;2.5.1 Precision and Recall;68
4.6;2.6 Discussions;72
4.7;2.7 Conclusion and Perspectives;73
4.8;References;74
5;Chapter 3: Modelling Industrial Design Contribution to Innovative Product or Service Design Process in a Highly Constrained En...;76
5.1;3.1 Introduction;77
5.2;3.2 Process Modelling;78
5.2.1;3.2.1 Design Playground;79
5.2.2;3.2.2 Design Process;81
5.2.3;3.2.3 Literature Model;88
5.3;3.3 Model Experiments;90
5.3.1;3.3.1 Toward an Experimental Design Model;90
5.3.2;3.3.2 The Uniklic Design Case;92
5.4;3.4 Benefits;93
5.5;References;95
6;Chapter 4: Teaching Competence for Organising Problem-Centred Teaching-Learning Process;97
6.1;4.1 Defining Problem-Centred Education;97
6.1.1;4.1.1 Educational Context and Problem-Centred Education;97
6.1.2;4.1.2 TRIZ-Based Educational Movements and Problem-Centred Education;100
6.1.3;4.1.3 Aims, Definition, Content and Instruction of Problem-Centred Education;101
6.1.3.1;4.1.3.1 Aims and Definition;101
6.1.3.2;4.1.3.2 Content;103
6.1.3.3;4.1.3.3 Instruction;105
6.2;4.2 The Study of Teaching Competence for Problem-Centred Education;107
6.2.1;4.2.1 Teacher Competence and Teaching Competence;107
6.2.2;4.2.2 The Study of a Teacher in Action Organising a Problem-Centred Teaching-Learning Process;108
6.2.2.1;4.2.2.1 Study Problem and Aim;108
6.2.2.2;4.2.2.2 Research Base;108
6.2.2.3;4.2.2.3 Data Collection Method;108
6.2.2.4;4.2.2.4 Data Selection Logic;108
6.2.2.5;4.2.2.5 Data Analysis Method;109
6.2.2.6;4.2.2.6 Procedure of the Study;109
6.2.2.7;4.2.2.7 Results and Discussion;110
6.2.2.8;4.2.2.8 Conclusions;112
6.3;References;113
7;Chapter 5: Problem Graph for Warehousing Design;117
7.1;5.1 Introduction;117
7.2;5.2 Literature Review;118
7.3;5.3 The Reference Model;119
7.3.1;5.3.1 Stage 1: Select;120
7.3.2;5.3.2 Stage 2: Interview;122
7.3.3;5.3.3 Stage 3: Standardize;122
7.3.4;5.3.4 Stage 4: Put Into Operation;125
7.4;5.4 Example of Application;127
7.4.1;5.4.1 Experiment 1: Without the Reference Model;128
7.4.2;5.4.2 Experiment 2: With the Reference Model;128
7.4.3;5.4.3 Comparison of Experiments 1 and 2;128
7.5;5.5 Conclusion and Perspective;129
7.6;Appendix 1: Problems and Performance Metrics Extract;130
7.7;Appendix 2: Solutions and Action Parameters Extract;130
7.8;Appendix 3: Problems Generate Problems Extract;131
7.9;Appendix 4: Problems Solved by Solutions Extract;132
7.10;Appendix 5: Solutions Generate Problems Extract;133
7.11;Appendix 6: Taxonomy Extract, Protégé Screenshot;134
7.12;References;134
8;Chapter 6: Key Indicators of Inventive Performance for Characterizing Design Activities in RandDs: Application in Technologica...;141
8.1;6.1 Introduction;141
8.2;6.2 In Search of Inventive Activities;142
8.3;6.3 Essential Elements of a Measurement System;143
8.4;6.4 Appropriate Level for the Analysis;145
8.5;6.5 Design Activities;147
8.5.1;6.5.1 Processing;147
8.5.2;6.5.2 Importation and Exportation;148
8.5.3;6.5.3 Entitling;149
8.5.4;6.5.4 Support;149
8.6;6.6 Inventive Performance;150
8.6.1;6.6.1 Inventive Effectiveness;150
8.6.2;6.6.2 Inventive Efficiency;155
8.6.3;6.6.3 Inventive Pertinence;157
8.7;6.7 Conclusion;158
8.8;References;159
9;Chapter 7: Optimization Methods for Inventive Design;162
9.1;7.1 Introduction;162
9.2;7.2 Background;164
9.2.1;7.2.1 From Optimization to Invention;164
9.2.2;7.2.2 The Dialectical Approach and Contradiction;165
9.2.3;7.2.3 The Representation Model of Contradiction for Optimization and Invention;170
9.3;7.3 Research Issues and Research Method;173
9.3.1;7.3.1 Research Problem;173
9.3.2;7.3.2 Research Method;175
9.4;7.4 Results;176
9.4.1;7.4.1 Extraction of Generalized Technical Contradiction;177
9.4.2;7.4.2 Extraction of Generalized Physical Contradiction;178
9.4.3;7.4.3 Identification of Parameters Involved in Physical Contradictions;179
9.4.4;7.4.4 Process of Model Change Using Three Algorithms;181
9.5;7.5 Illustration;183
9.5.1;7.5.1 Problem Formulation and Simulation;183
9.5.2;7.5.2 Optimization and Solution Filter;185
9.5.3;7.5.3 Model Change;185
9.5.3.1;7.5.3.1 GTC Extraction and Selection;185
9.5.3.2;7.5.3.2 EP-Based GPC Extraction;186
9.5.3.2.1;GTC Extraction and GPC Extraction;186
9.5.3.3;7.5.3.3 Inventive Problem Solving by Using TRIZ;187
9.5.3.4;7.5.3.4 System Evolution from a Partial Solution;190
9.6;7.6 Discussion and Prospective;191
9.7;7.7 Conclusion;193
9.8;References;194
10;Chapter 8: Contribution to Formalizing Links Between Invention and Optimization in the Inventive Design Method;197
10.1;8.1 Introduction;197
10.2;8.2 Technical Background;199
10.2.1;8.2.1 Synergy of TRIZ with Other Design Methods/Tools;199
10.2.2;8.2.2 Initial Situation Analysis and Contradiction Formulation in Inventive Design;199
10.2.3;8.2.3 Discussion and Motivation;201
10.3;8.3 Enhancement of the Problem Formulation in the IDM Perspective;203
10.3.1;8.3.1 System Completeness of TRIZ from the Viewpoint of the Simulation-Based Design Approach;203
10.3.2;8.3.2 Development of the Sim-TRIZ Contradiction System Model;205
10.3.3;8.3.3 Development of the Approach;206
10.4;8.4 Case Example 1: Redesign of a Mini USB-Fridge;209
10.4.1;8.4.1 General Context of Mini USB-Fridge;209
10.4.2;8.4.2 Application of Proposed Approach;210
10.5;8.5 Case Example 2: Redesign of a Solenoid Actuator;213
10.5.1;8.5.1 Context of the Design Project;213
10.5.2;8.5.2 Application of Proposed Approach;213
10.6;8.6 Conclusion and Future Work;217
10.7;References;218
11;Chapter 9: Collaboration Framework for TRIZ-Based Open Computer-Aided Innovation;220
11.1;9.1 Introduction;221
11.1.1;9.1.1 Industrial Context;221
11.1.2;9.1.2 From Closed to Open Innovation;222
11.2;9.2 Computer-Aided Innovation and TRIZ;223
11.2.1;9.2.1 Web 2.0 as a Platform for Collaboration;225
11.2.2;9.2.2 TRIZ-Based Inventive Problem Resolution;227
11.2.3;9.2.3 Academic Developments;227
11.3;9.3 Architecture for TRIZ-Based Collaborative Open CAI;230
11.3.1;9.3.1 Overview;230
11.3.2;9.3.2 Framework Architecture;233
11.3.2.1;9.3.2.1 Innovation Process;233
11.3.2.2;9.3.2.2 Collaborative Resolution Process;234
11.3.2.3;9.3.2.3 Implications of Collective Intelligence;235
11.3.3;9.3.3 Techniques for User-Generated Content;236
11.4;9.4 Application Scenario;236
11.4.1;9.4.1 Problem Analysis and Formulation;236
11.4.2;9.4.2 Solution Selection;238
11.5;9.5 Trends and Future Research;241
11.5.1;9.5.1 Ontology-Based CAI;241
11.5.2;9.5.2 Avatar-Based Innovation;242
11.6;9.6 Conclusion;242
11.7;References;244
12;Chapter 10: System Dynamics Modeling and TRIZ: A Practical Approach for Inventive Problem Solving;246
12.1;10.1 Introduction;247
12.2;10.2 The Theory of Inventive Problem Solving: Opportunities and Advantages;248
12.3;10.3 The System Dynamics Modeling and Simulation;251
12.3.1;10.3.1 The Causal Loop Diagram and the Flow and Stock Diagram;251
12.3.2;10.3.2 The System Dynamics Methodology;253
12.3.3;10.3.3 SD Advantages/Benefits and Limitations;254
12.4;10.4 A Combined Solving Process: TRIZ + SD;255
12.4.1;10.4.1 Related Work;256
12.4.2;10.4.2 Methodological Approach;258
12.5;10.5 Case Study;259
12.6;10.6 Discussion;263
12.7;10.7 Conclusion and Future Work;267
12.8;References;268
13;Chapter 11: Conceptual Framework of an Intelligent System to Support Creative Workshops;270
13.1;11.1 Introduction;270
13.2;11.2 Evolution of Innovation and Creative Practices;272
13.2.1;11.2.1 Creativity from Innovation;272
13.2.2;11.2.2 Creative Techniques and Tools;274
13.2.2.1;11.2.2.1 Creative Techniques;274
13.2.2.2;11.2.2.2 Open Innovation Changes Creative Practices;275
13.3;11.3 Current Challenges of Creative Workshops;276
13.3.1;11.3.1 The Basis of a Creative Workshop;277
13.3.2;11.3.2 Creative Workshop Issues;279
13.3.3;11.3.3 Assisting a Creative Workshop with Digital Systems;281
13.4;11.4 The Prospect of a Creative Support System for a Creative Workshop;282
13.4.1;11.4.1 A State of the Art of Current Creative Support System;282
13.4.2;11.4.2 Multi-Agent System for Creative Workshops;284
13.4.3;11.4.3 Creative Workshop Management Ontology;285
13.4.4;11.4.4 Idea Evaluation Assisted by Agent;286
13.4.5;11.4.5 Non-Investigated Specifications;288
13.5;11.5 Conclusion;288
13.6;References;289




