Cavalieri / Miles | Riemann Surfaces and Algebraic Curves | Buch | 978-1-316-60352-9 | www2.sack.de

Buch, Englisch, Band 87, 194 Seiten, Format (B × H): 151 mm x 228 mm, Gewicht: 303 g

Reihe: London Mathematical Society Student Texts

Cavalieri / Miles

Riemann Surfaces and Algebraic Curves


Erscheinungsjahr 2016
ISBN: 978-1-316-60352-9
Verlag: Cambridge University Press

Buch, Englisch, Band 87, 194 Seiten, Format (B × H): 151 mm x 228 mm, Gewicht: 303 g

Reihe: London Mathematical Society Student Texts

ISBN: 978-1-316-60352-9
Verlag: Cambridge University Press


Hurwitz theory, the study of analytic functions among Riemann surfaces, is a classical field and active research area in algebraic geometry. The subject's interplay between algebra, geometry, topology and analysis is a beautiful example of the interconnectedness of mathematics. This book introduces students to this increasingly important field, covering key topics such as manifolds, monodromy representations and the Hurwitz potential. Designed for undergraduate study, this classroom-tested text includes over 100 exercises to provide motivation for the reader. Also included are short essays by guest writers on how they use Hurwitz theory in their work, which ranges from string theory to non-Archimedean geometry. Whether used in a course or as a self-contained reference for graduate students, this book will provide an exciting glimpse at mathematics beyond the standard university classes.

Cavalieri / Miles Riemann Surfaces and Algebraic Curves jetzt bestellen!

Weitere Infos & Material


Introduction; 1. From complex analysis to Riemann surfaces; 2. Introduction to manifolds; 3. Riemann surfaces; 4. Maps of Riemann surfaces; 5. Loops and lifts; 6. Counting maps; 7. Counting monodromy representations; 8. Representation theory of Sd; 9. Hurwitz numbers and Z(Sd); 10. The Hurwitz potential; Appendix A. Hurwitz theory in positive characteristic; Appendix B. Tropical Hurwitz numbers; Appendix C. Hurwitz spaces; Appendix D. Does physics have anything to say about Hurwitz numbers?; References; Index.


Miles, Eric
Eric Miles is Assistant Professor of Mathematics at Colorado Mesa University. He received his PhD in 2014 under the supervision of Renzo Cavalieri. Miles' doctoral work was on Bridgeland Stability Conditions, an area of algebraic geometry that makes significant use of homological algebra.

Cavalieri, Renzo
Renzo Cavalieri is Associate Professor of Mathematics at Colorado State University. He received his PhD in 2005 at the University of Utah under the direction of Aaron Bertram. Hurwitz theory has been an important feature and tool in Cavalieri's research, which revolves around the interaction among moduli spaces of curves and maps from curves, and their different compactifications. He has taught courses on Hurwitz theory at the graduate and undergraduate level at Colorado State University and around the world at the National Institute for Pure and Applied Mathematics (IMPA) in Brazil, Beijing University, and the University of Costa Rica.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.