E-Book, Englisch, 520 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
E-Book, Englisch, 520 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
ISBN: 978-3-13-198401-2
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
methods in synthetic chemistry. Its product-based classification system enables
chemists to easily find solutions to their synthetic problems.
Key Features:
- Critical selection of reliable synthetic methods,
saving the researcher the time required to find procedures in the primary
literature.
- Expertise provided by leading chemists.
- Detailed experimental procedures.
- The information is highly organized in a logical
format to allow easy access to the relevant information.
The Science of Synthesis Editorial Board, together with
the volume editors and authors, is constantly reviewing the whole field of
synthetic organic chemistry as presented in Science of Synthesis and evaluating
significant developments in synthetic methodology. Four annual volumes updating
content across all categories ensure that you always have access to
state-of-the-art synthetic methodology.
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Weitere Infos & Material
1;Science of Synthesis: Knowledge Updates 2014/1;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;14
1.6;Table of Contents;16
1.7;Volume 1: Compounds with Transition Metal--Carbon p-Bonds and Compounds of Groups 10 – 8 (Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru, Os);28
1.7.1;1.7 Product Class 7: Organometallic Complexes of Iron;28
1.7.1.1;1.7.1 Product Subclass 1: Iron–Arene Complexes;33
1.7.1.1.1;Synthesis of Product Subclass 1;33
1.7.1.1.1.1;1.7.1.1 Method 1: Direct Complexation of Arenes;33
1.7.1.1.1.2;1.7.1.2 Method 2: Iron-Catalyzed Cycloaromatization;35
1.7.1.1.1.3;1.7.1.3 Method 3: Modification of .6-Complexes;35
1.7.1.1.1.3.1;1.7.1.3.1 Variation 1: Replacement of Chloride in Chlorobenzene Complexes by Nucleophiles;36
1.7.1.1.1.3.2;1.7.1.3.2 Variation 2: Use of Palladium-Catalyzed Coupling in the Presence of Cationic Iron–Cyclopentadienyl Complexes;37
1.7.1.1.1.3.3;1.7.1.3.3 Variation 3: Use of Nucleophilic Complexes Obtained by Deprotonation of Arene–Cyclopentadienyliron Complexes;38
1.7.1.1.1.3.4;1.7.1.3.4 Variation 4: Ligand Modification by Ring-Closing Metathesis;38
1.7.1.1.1.3.5;1.7.1.3.5 Variation 5: Nucleophile Addition to a Carbonyl Ligand;39
1.7.1.1.1.3.6;1.7.1.3.6 Variation 6: Modification of Functional Groups in the Presence of Cationic Iron–Cyclopentadienyl Complexes;39
1.7.1.1.2;Applications of Product Subclass 1 in Organic Synthesis;39
1.7.1.1.2.1;1.7.1.4 Method 4: Metal Removal To Give Organic Products;39
1.7.1.2;1.7.2 Product Subclass 2: Iron–Dienyl Complexes;41
1.7.1.2.1;Synthesis of Product Subclass 2;41
1.7.1.2.1.1;1.7.2.1 Method 1: Direct Complexation;41
1.7.1.2.1.1.1;1.7.2.1.1 Variation 1: Reaction of Cyclopentadienyl Anions with Iron Salts;41
1.7.1.2.1.1.2;1.7.2.1.2 Variation 2: Transfer of Cyclopentadienyliron;43
1.7.1.2.1.1.3;1.7.2.1.3 Variation 3: From Neutral Cyclopentadiene Derivatives;44
1.7.1.2.1.2;1.7.2.2 Method 2: Modification of .5-Cyclopentadienyl Complexes;44
1.7.1.2.1.2.1;1.7.2.2.1 Variation 1: Friedel–Crafts Acylation of Ferrocene Complexes;44
1.7.1.2.1.2.2;1.7.2.2.2 Variation 2: Metalation of Ferrocene Complexes;45
1.7.1.2.1.2.3;1.7.2.2.3 Variation 3: Modification of Functional Groups on Ferrocene Complexes;46
1.7.1.2.1.2.4;1.7.2.2.4 Variation 4: Redox Chemistry at the Metal of Ferrocene Complexes;47
1.7.1.2.1.2.5;1.7.2.2.5 Variation 5: Protonation at Iron;47
1.7.1.2.1.2.6;1.7.2.2.6 Variation 6: Manipulation of Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron;47
1.7.1.2.1.3;1.7.2.3 Method 3: Preparation by Hydride Abstraction;48
1.7.1.2.1.3.1;1.7.2.3.1 Variation 1: Regioisomer Preparation without Rearrangement;49
1.7.1.2.1.3.2;1.7.2.3.2 Variation 2: Regioisomer Preparation with Rearrangement;51
1.7.1.2.1.4;1.7.2.4 Method 4: Preparation from .4-Triene Complexes with Electrophiles;51
1.7.1.2.1.5;1.7.2.5 Method 5: Preparation from Dienol Complexes with Acid;53
1.7.1.2.1.5.1;1.7.2.5.1 Variation 1: Without Rearrangement;53
1.7.1.2.1.5.2;1.7.2.5.2 Variation 2: With Rearrangement;54
1.7.1.2.1.6;1.7.2.6 Method 6: Preparation by Demethoxylation in Acid;55
1.7.1.2.1.7;1.7.2.7 Method 7: Preparation by Oxidation with Thallium(III) Salts;57
1.7.1.2.1.8;1.7.2.8 Method 8: Preparation from Dienone Complexes;57
1.7.1.2.1.9;1.7.2.9 Method 9: Preparation from .6-Complexes;59
1.7.1.2.1.9.1;1.7.2.9.1 Variation 1: Nucleophile Addition to .6-Complexes at the p-System;59
1.7.1.2.1.9.2;1.7.2.9.2 Variation 2: Dealkoxylation of .6-Complexes;60
1.7.1.2.1.10;1.7.2.10 Method 10: Nucleophile Addition to .5-Complexes;60
1.7.1.2.1.10.1;1.7.2.10.1 Variation 1: Addition at the p-System;60
1.7.1.2.1.10.2;1.7.2.10.2 Variation 2: Addition next to the p-System;60
1.7.1.2.1.10.3;1.7.2.10.3 Variation 3: Addition at a Carbonyl Group;61
1.7.1.2.1.11;1.7.2.11 Method 11: Access to Salts by a Sequence of Nucleophile Addition and Leaving-Group Removal;62
1.7.1.2.1.11.1;1.7.2.11.1 Variation 1: Without Rearrangement;62
1.7.1.2.1.11.2;1.7.2.11.2 Variation 2: With Rearrangement;64
1.7.1.2.1.12;1.7.2.12 Method 12: Preparation by Opening Cyclopropane Rings;65
1.7.1.2.1.13;1.7.2.13 Method 13: Preparation of Nonracemic Complexes;65
1.7.1.2.1.13.1;1.7.2.13.1 Variation 1: From Ferrocene Complexes by Asymmetric Induction;66
1.7.1.2.1.13.2;1.7.2.13.2 Variation 2: From Complexes Originating from Resolution or Asymmetric Induction;66
1.7.1.2.1.13.3;1.7.2.13.3 Variation 3: From Complexes Originating from Biological Sources;67
1.7.1.2.2;Applications of Product Subclass 2 in Organic Synthesis;68
1.7.1.2.2.1;1.7.2.14 Method 14: Metal Removal To Give Organic Products;68
1.7.1.2.2.1.1;1.7.2.14.1 Variation 1: From Ferrocene Complexes;68
1.7.1.2.2.1.2;1.7.2.14.2 Variation 2: From Cationic .5-Ligated Tricarbonyliron Complexes;69
1.7.1.2.2.1.3;1.7.2.14.3 Variation 3: From .5-Cyclopentadienyl–Iron Complexes Formed by Nucleophilic Addition to .6-Complexes;69
1.7.1.3;1.7.3 Product Subclass 3: Iron–Diene Complexes;69
1.7.1.3.1;Synthesis of Product Subclass 3;70
1.7.1.3.1.1;1.7.3.1 Method 1: Preparation by Complexation;70
1.7.1.3.1.1.1;1.7.3.1.1 Variation 1: From Dienes without Rearrangement;70
1.7.1.3.1.1.2;1.7.3.1.2 Variation 2: From Dienes with Rearrangement;72
1.7.1.3.1.1.3;1.7.3.1.3 Variation 3: From Arenes by In Situ Reduction;73
1.7.1.3.1.1.4;1.7.3.1.4 Variation 4: From Dienes and Alkynes by Reaction with .1-Complexes;73
1.7.1.3.1.1.5;1.7.3.1.5 Variation 5: From Chromium Fischer Carbene Complexes;74
1.7.1.3.1.1.6;1.7.3.1.6 Variation 6: From Cycloheptatrienes and Cyclohexadienones by Reduction;74
1.7.1.3.1.1.7;1.7.3.1.7 Variation 7: From Dihydrothiophene 1,1-Dioxides;75
1.7.1.3.1.1.8;1.7.3.1.8 Variation 8: From Allyl Alcohols;75
1.7.1.3.1.1.9;1.7.3.1.9 Variation 9: From Dihalides, Allyl Halides, and Phosphate Esters;75
1.7.1.3.1.1.10;1.7.3.1.10 Variation 10: From Pyrones;76
1.7.1.3.1.1.11;1.7.3.1.11 Variation 11: From Dimethylcyclopropenes;76
1.7.1.3.1.1.12;1.7.3.1.12 Variation 12: From Vinylcyclopropanes;77
1.7.1.3.1.1.13;1.7.3.1.13 Variation 13: From Allenes via Trimethylenemethane Lactones;77
1.7.1.3.1.2;1.7.3.2 Method 2: Preparation from .3,.1-Complexes;78
1.7.1.3.1.2.1;1.7.3.2.1 Variation 1: From Ferralactone Complexes;78
1.7.1.3.1.2.2;1.7.3.2.2 Variation 2: From .3,.1-Complexes;79
1.7.1.3.1.2.3;1.7.3.2.3 Variation 3: Nucleophile Addition to Cationic .3,.1-Carbene Complexes;79
1.7.1.3.1.3;1.7.3.3 Method 3: Cyclodimerization of .2-Ligands;80
1.7.1.3.1.4;1.7.3.4 Method 4: Nucleophile Addition to .5-Complexes at the p-System;81
1.7.1.3.1.4.1;1.7.3.4.1 Variation 1: Cyclohexadienyl Complexes;81
1.7.1.3.1.4.2;1.7.3.4.2 Variation 2: Cycloheptadienyl Complexes;91
1.7.1.3.1.4.3;1.7.3.4.3 Variation 3: Cyclooctadienyl Complexes;92
1.7.1.3.1.4.4;1.7.3.4.4 Variation 4: Acyclic Dienyl Complexes;92
1.7.1.3.1.4.5;1.7.3.4.5 Variation 5: In Situ Generation of Acyclic Dienyl Complexes;94
1.7.1.3.1.4.6;1.7.3.4.6 Variation 6: Cyclopentadienyl Complexes;96
1.7.1.3.1.5;1.7.3.5 Method 5: Metal-Centered Reduction of .5-Complexes at the p-System;96
1.7.1.3.1.6;1.7.3.6 Method 6: Modification of .4-Complexes;96
1.7.1.3.1.6.1;1.7.3.6.1 Variation 1: By Acylation;97
1.7.1.3.1.6.2;1.7.3.6.2 Variation 2: By Lithiation and Addition of Electrophiles;97
1.7.1.3.1.6.3;1.7.3.6.3 Variation 3: By Palladium Coupling;99
1.7.1.3.1.6.4;1.7.3.6.4 Variation 4: Cyclization Reactions of .4-Diene Complexes;100
1.7.1.3.1.6.5;1.7.3.6.5 Variation 5: Oxidative Cyclization of .4-Diene Complexes;101
1.7.1.3.1.6.6;1.7.3.6.6 Variation 6: Nucleophile Addition to .4-Complexes at the p-System;102
1.7.1.3.1.6.7;1.7.3.6.7 Variation 7: Nucleophile Addition to .4-Complexes at a Carbonyl Ligand;103
1.7.1.3.1.6.8;1.7.3.6.8 Variation 8: Nucleophile Addition to .4-Complexes next to the p-System;103
1.7.1.3.1.6.9;1.7.3.6.9 Variation 9: Reactions of Enolates and Silyl Enol Ethers;107
1.7.1.3.1.6.10;1.7.3.6.10 Variation 10: Epoxide Formation and Cyclopropanation next to the p-System;108
1.7.1.3.1.6.11;1.7.3.6.11 Variation 11: Diol Synthesis next to the p-System;109
1.7.1.3.1.6.12;1.7.3.6.12 Variation 12: Epoxide Opening next to the p-System;110
1.7.1.3.1.6.13;1.7.3.6.13 Variation 13: Cycloaddition Reactions next to the p-System;110
1.7.1.3.1.6.14;1.7.3.6.14 Variation 14: By 1,3-Migration of a Tricarbonyliron Group;112
1.7.1.3.1.6.15;1.7.3.6.15 Variation 15: Functionalization of Cycloheptatriene Complexes;113
1.7.1.3.1.7;1.7.3.7 Method 7: Complexation of Heterodienes;114
1.7.1.3.1.8;1.7.3.8 Method 8: Additional Methods for the Formation of .4-Complexes;115
1.7.1.3.1.8.1;1.7.3.8.1 Variation 1: Alkylation of .3-Anions;115
1.7.1.3.1.8.2;1.7.3.8.2 Variation 2: From Pentacarbonyliron by Nucleophile Addition at Carbonyl;115
1.7.1.3.1.8.3;1.7.3.8.3 Variation 3: Exchange of Carbonyl for Phosphines, Phosphites, and Nitrosonium;116
1.7.1.3.1.8.4;1.7.3.8.4 Variation 4: Radical and Carbene Methods in the Presence of Iron Complexes;117
1.7.1.3.1.9;1.7.3.9 Method 9: Preparation of Nonracemic Complexes;117
1.7.1.3.1.9.1;1.7.3.9.1 Variation 1: Asymmetric Complexation;117
1.7.1.3.1.9.2;1.7.3.9.2 Variation 2: Asymmetric Modification and Kinetic Resolution of .4-Complexes;121
1.7.1.3.1.9.3;1.7.3.9.3 Variation 3: By Asymmetric Induction and Kinetic Resolution with .5-Complexes;122
1.7.1.3.1.9.4;1.7.3.9.4 Variation 4: Classical Resolution of Chiral .4-Complexes;122
1.7.1.3.1.9.5;1.7.3.9.5 Variation 5: Kinetic Resolution of Chiral .4-Complexes;124
1.7.1.3.2;Applications of Product Subclass 3 in Organic Synthesis;125
1.7.1.3.2.1;1.7.3.10 Method 10: Metal Removal To Give Organic Products;125
1.7.1.3.2.1.1;1.7.3.10.1 Variation 1: Decomplexation without Ligand Modification;125
1.7.1.3.2.1.2;1.7.3.10.2 Variation 2: Decomplexation with Ligand Modification;130
1.7.1.3.2.2;1.7.3.11 Method 11: Reactions next to .3-Complexes, Followed by Rearrangement;137
1.7.1.4;1.7.4 Product Subclass 4: Iron–Allyl Complexes;137
1.7.1.4.1;Synthesis of Product Subclass 4;137
1.7.1.4.1.1;1.7.4.1 Method 1: Protonation of Diene Complexes;137
1.7.1.4.1.1.1;1.7.4.1.1 Variation 1: From .2-Complexes;137
1.7.1.4.1.1.2;1.7.4.1.2 Variation 2: From .4-Complexes;138
1.7.1.4.1.1.3;1.7.4.1.3 Variation 3: During Direct Complexation of Allyl Alcohols and Dienes in the Presence of Acid;138
1.7.1.4.1.2;1.7.4.2 Method 2: Preparation by Leaving-Group Displacement from .2-Complexes;138
1.7.1.4.1.3;1.7.4.3 Method 3: Preparation by Opening Vinyl Epoxides and Cyclopropanes;139
1.7.1.4.1.3.1;1.7.4.3.1 Variation 1: From Epoxides;139
1.7.1.4.1.3.2;1.7.4.3.2 Variation 2: From Aziridines;141
1.7.1.4.1.3.3;1.7.4.3.3 Variation 3: From Cyclopropanes;141
1.7.1.4.1.3.4;1.7.4.3.4 Variation 4: From Cyclobutanes;142
1.7.1.4.1.4;1.7.4.4 Method 4: Nucleophile Addition at a Complexed p-System;142
1.7.1.4.1.4.1;1.7.4.4.1 Variation 1: Nucleophile Addition to .4-Complexes;142
1.7.1.4.1.4.2;1.7.4.4.2 Variation 2: Nucleophile Addition to .5-Complexes;143
1.7.1.4.1.4.3;1.7.4.4.3 Variation 3: Modification of Functionality and Ligand Exchange;144
1.7.1.4.1.5;1.7.4.5 Method 5: Nucleophile Addition to .3-Complexes next to the p-System;145
1.7.1.4.1.6;1.7.4.6 Method 6: Nucleophile Addition at a Carbonyl Ligand;146
1.7.1.4.1.6.1;1.7.4.6.1 Variation 1: Nucleophile Addition to .4-Complexes;146
1.7.1.4.1.6.2;1.7.4.6.2 Variation 2: Nucleophile Addition to .2,.2-Complexes;146
1.7.1.4.1.7;1.7.4.7 Method 7: Additional Methods for the Formation of .3-Complexes;146
1.7.1.4.1.7.1;1.7.4.7.1 Variation 1: Anionic .3-Complexes;146
1.7.1.4.1.7.2;1.7.4.7.2 Variation 2: Modification by Carbonyl Insertion;147
1.7.1.4.1.7.3;1.7.4.7.3 Variation 3: Modification by Alkene Insertion;147
1.7.1.4.1.7.4;1.7.4.7.4 Variation 4: From .4-Vinylketene Complexes;147
1.7.1.4.1.7.5;1.7.4.7.5 Variation 5: Reductive Methods To Make Anionic .3-Complexes;148
1.7.1.4.1.7.6;1.7.4.7.6 Variation 6: Exchange of Carbonyl for Nitrosonium;148
1.7.1.4.1.8;1.7.4.8 Method 8: Preparation of Nonracemic Complexes;148
1.7.1.4.2;Applications of Product Subclass 4 in Organic Synthesis;149
1.7.1.4.2.1;1.7.4.9 Method 9: Metal Removal To Give Organic Products;149
1.7.1.5;1.7.5 Product Subclass 5: Iron–Alkene Complexes;153
1.7.1.5.1;Synthesis of Product Subclass 5;153
1.7.1.5.1.1;1.7.5.1 Method 1: Direct Complexation of Alkenes;153
1.7.1.5.1.1.1;1.7.5.1.1 Variation 1: Ligand Exchange with a Butene Complex;153
1.7.1.5.1.1.2;1.7.5.1.2 Variation 2: Reaction with Nonacarbonyldiiron;153
1.7.1.5.1.1.3;1.7.5.1.3 Variation 3: Reaction with Pentacarbonyliron;154
1.7.1.5.1.2;1.7.5.2 Method 2: Preparation by Hydride Abstraction from .1-Complexes;154
1.7.1.5.1.3;1.7.5.3 Method 3: Preparation by Protonation of .1-Complexes;155
1.7.1.5.1.3.1;1.7.5.3.1 Variation 1: Protonation of .1-Allyl Complexes;155
1.7.1.5.1.3.2;1.7.5.3.2 Variation 2: Removal of Leaving Groups from .1-Alkyl Complexes;156
1.7.1.5.1.3.3;1.7.5.3.3 Variation 3: Protonation at Iron;156
1.7.1.5.1.4;1.7.5.4 Method 4: Reactions of .1-Allyl Complexes with Electrophiles;156
1.7.1.5.1.4.1;1.7.5.4.1 Variation 1: Reaction with Aldehydes and Ketones in the Presence of a Lewis Acid;156
1.7.1.5.1.4.2;1.7.5.4.2 Variation 2: Reaction with Activated Alkenes;157
1.7.1.5.1.4.3;1.7.5.4.3 Variation 3: Reaction with .2-Alkene Complexes;158
1.7.1.5.1.4.4;1.7.5.4.4 Variation 4: Reaction with .5-Dienyl Complexes;158
1.7.1.5.1.5;1.7.5.5 Method 5: Nucleophile Addition at a Complexed p-System;158
1.7.1.5.1.5.1;1.7.5.5.1 Variation 1: Nucleophile Addition to .2-Complexes;158
1.7.1.5.1.5.2;1.7.5.5.2 Variation 2: Nucleophile Addition to .3-Complexes;159
1.7.1.5.1.5.3;1.7.5.5.3 Variation 3: Nucleophile Addition to .4-Complexes;159
1.7.1.5.1.5.4;1.7.5.5.4 Variation 4: Nucleophile Addition to .5-Complexes;160
1.7.1.5.1.6;1.7.5.6 Method 6: Preparation of Nonracemic Complexes;160
1.7.1.5.2;Applications of Product Subclass 5 in Organic Synthesis;161
1.7.1.5.2.1;1.7.5.7 Method 7: Metal Removal To Give Organic Products;161
1.7.1.6;1.7.6 Product Subclass 6: Iron–Carbene Complexes;162
1.7.1.6.1;Synthesis of Product Subclass 6;162
1.7.1.6.1.1;1.7.6.1 Method 1: Preparation by the Fischer Carbene Method;162
1.7.1.6.1.2;1.7.6.2 Method 2: From Azadiene Iron Complexes;163
1.7.1.6.1.3;1.7.6.3 Method 3: Removal of Leaving Groups from Metal–Alkyl Complexes;164
1.7.1.6.1.4;1.7.6.4 Method 4: Formation of Iron–N-Heterocyclic Carbene Complexes;164
1.7.1.6.1.5;1.7.6.5 Method 5: Modification of Other Carbene Complexes;165
1.7.1.6.1.5.1;1.7.6.5.1 Variation 1: Exchange of Substituents at the Carbene Complex;165
1.7.1.6.1.5.2;1.7.6.5.2 Variation 2: Reaction at Functional Groups Adjacent to the Carbene Complex;165
1.7.1.6.1.5.3;1.7.6.5.3 Variation 3: Photolysis of Carbene Complexes;166
1.7.1.6.1.6;1.7.6.6 Method 6: Preparation by Ring Expansion;166
1.7.1.6.1.7;1.7.6.7 Method 7: Preparation of Bridging Carbene Complexes;166
1.7.1.6.1.8;1.7.6.8 Method 8: Reduction of Cationic µ-CH Bridging Carbyne Complexes;169
1.7.1.6.1.9;1.7.6.9 Method 9: Preparation of Nonracemic Complexes;169
1.7.1.6.2;Applications of Product Subclass 6 in Organic Synthesis;169
1.7.1.6.2.1;1.7.6.10 Method 10: Cyclopropanation by Transfer of Diazo Esters;169
1.7.1.6.2.2;1.7.6.11 Method 11: C--H Insertion Reactions;170
1.7.1.6.2.3;1.7.6.12 Method 12: Cyclization with Alkynes To Form Naphthols and Furans;170
1.7.1.6.2.4;1.7.6.13 Method 13: Removal of the Metal by Oxidation;171
1.7.1.7;1.7.7 Product Subclass 7: Iron–.1-Alkyl, -Alkenyl, -Alkynyl, and -Heteroatom-Bound Complexes;171
1.7.1.7.1;Synthesis of Product Subclass 7;171
1.7.1.7.1.1;1.7.7.1 Method 1: Metal Addition to Electrophiles;171
1.7.1.7.1.2;1.7.7.2 Method 2: Metal Addition to Nucleophiles/Lewis Bases;172
1.7.1.7.1.3;1.7.7.3 Method 3: Nucleophile Addition and Deprotonation Reactions;172
1.7.1.7.1.4;1.7.7.4 Method 4: Additional Methods for the Formation of .1-Alkyl Complexes;173
1.7.1.7.1.4.1;1.7.7.4.1 Variation 1: Nucleophile Addition to .1-Carbene Complexes;173
1.7.1.7.1.4.2;1.7.7.4.2 Variation 2: Nucleophile Addition to .2-Alkyne Complexes;174
1.7.1.7.1.4.3;1.7.7.4.3 Variation 3: Nucleophile Addition to Dicarbonyl(.5-cyclopentadienyl)iron Halides;174
1.7.1.7.1.4.4;1.7.7.4.4 Variation 4: Nucleophile Addition to Carbonyl Complexes;175
1.7.1.7.1.4.5;1.7.7.4.5 Variation 5: .1-Aryl and .1-Alkynyl Complexes by Catalyzed Coupling Reactions;176
1.7.1.7.1.4.6;1.7.7.4.6 Variation 6: .1-Alkynyl Complexes from Alkynes;176
1.7.1.7.1.4.7;1.7.7.4.7 Variation 7: Deprotonation of .2-Alkene Complexes;176
1.7.1.7.1.4.8;1.7.7.4.8 Variation 8: Introduction of Sulfur and Selenium to Di-µ-carbonyldicarbonylbis(.5-cyclopentadienyl)diiron;176
1.7.1.7.1.5;1.7.7.5 Method 5: Reactions of Allyl Complexes;176
1.7.1.7.1.5.1;1.7.7.5.1 Variation 1: .1-Allyl Complexes;177
1.7.1.7.1.5.2;1.7.7.5.2 Variation 2: .3-Allyl Complexes;177
1.7.1.7.1.6;1.7.7.6 Method 6: Modification of Ligands in .1-Complexes;177
1.7.1.7.1.7;1.7.7.7 Method 7: Preparation of Nonracemic Complexes;179
1.7.1.7.2;Applications of Product Subclass 7 in Organic Synthesis;181
1.7.1.7.2.1;1.7.7.8 Method 8: Oxidation of .1-Products;181
1.7.1.7.2.1.1;1.7.7.8.1 Variation 1: Metal Removal To Generate a Carboxylic Acid;181
1.7.1.7.2.1.2;1.7.7.8.2 Variation 2: Metal Removal To Generate an Ester;181
1.7.1.7.2.1.3;1.7.7.8.3 Variation 3: Metal Removal To Generate an Amide;182
1.7.1.7.2.1.4;1.7.7.8.4 Variation 4: Metal Removal To Generate Alkyl Bromides or Epoxides;183
1.7.1.7.2.1.5;1.7.7.8.5 Variation 5: Metal Removal To Generate Ketones and Lactones;183
1.7.1.7.2.1.6;1.7.7.8.6 Variation 6: Reactions as Arylating Agents;185
1.7.1.7.2.1.7;1.7.7.8.7 Variation 7: Metal Removal with Transmetalation to Mercury;186
1.7.1.7.2.2;1.7.7.9 Method 9: Additional Methods for Decomplexation of .1-Alkyl Complexes;186
1.7.1.7.2.2.1;1.7.7.9.1 Variation 1: Disproportionation of .1-Products;186
1.7.1.7.2.2.2;1.7.7.9.2 Variation 2: Photochemical Dimerization;186
1.7.1.7.2.2.3;1.7.7.9.3 Variation 3: Asymmetric Cycloaddition;187
1.7.1.7.2.3;1.7.7.10 Method 10: Formation and Reaction of Oxyallyl Cation Complexes;187
1.7.1.7.2.3.1;1.7.7.10.1 Variation 1: [4 + 3] Cycloaddition;187
1.7.1.7.2.3.2;1.7.7.10.2 Variation 2: [2 + 3] Cycloaddition;187
1.7.1.7.2.3.3;1.7.7.10.3 Variation 3: Electrophilic Substitution;188
1.7.1.7.2.4;1.7.7.11 Method 11: Application of Collman’s Reagent and Related Tetracarbonylferrate Salts;188
1.7.1.7.2.4.1;1.7.7.11.1 Variation 1: Cyclization to Alkenes;189
1.7.1.7.2.4.2;1.7.7.11.2 Variation 2: Reductions with the Tetracarbonylhydroferrate Complex;190
1.7.1.7.3;1.7.8.17 Ferrocenes;220
1.7.1.7.3.1;1.7.8.17.1 Synthesis of Ferrocenes;220
1.7.1.7.3.1.1;1.7.8.17.1.1 Method 1: Monosubstituted and 1,1'-Disubstituted Ferrocenes by Metal-Mediated Procedures;220
1.7.1.7.3.1.1.1;1.7.8.17.1.1.1 Variation 1: Synthesis of Halogenated Ferrocenes;220
1.7.1.7.3.1.1.2;1.7.8.17.1.1.2 Variation 2: Synthesis of Hydroxy- and Alkoxyferrocenes and 1,1'-Dihydroxyferrocene;222
1.7.1.7.3.1.1.3;1.7.8.17.1.1.3 Variation 3: Synthesis of Aminoferrocenes and 1,1'-Diaminoferrocenes;223
1.7.1.7.3.1.1.4;1.7.8.17.1.1.4 Variation 4: Synthesis of Carboxyferrocene, Formylferrocene, 1,1'-Dicarboxyferrocene, and 1,1'-Diformylferrocene;224
1.7.1.7.3.1.1.5;1.7.8.17.1.1.5 Variation 5: Synthesis of 1'-Formyl-2,5-dimethylazaferrocene;226
1.7.1.7.3.1.2;1.7.8.17.1.2 Method 2: Acyl- and Alkenylferrocenes under Friedel–Crafts Conditions;226
1.7.1.7.3.1.2.1;1.7.8.17.1.2.1 Variation 1: Synthesis of Alkenylferrocenes and 1,1'-Dialkenylferrocenes;227
1.7.1.7.3.1.3;1.7.8.17.1.3 Method 3: Chiral Ferrocenylalkyl Alcohols and Ferrocenylalkylamines;227
1.7.1.7.3.1.3.1;1.7.8.17.1.3.1 Variation 1: Via Stereoselective Alkylation and Arylation of Formylferrocene;228
1.7.1.7.3.1.3.2;1.7.8.17.1.3.2 Variation 2: Via Stereoselective Reduction of Acyl Intermediates;230
1.7.1.7.3.1.3.3;1.7.8.17.1.3.3 Variation 3: Via Enzymatic Methods;231
1.7.1.7.3.1.4;1.7.8.17.1.4 Method 4: Oxazol-2-ylferrocenes;232
1.7.1.7.3.1.5;1.7.8.17.1.5 Method 5: Chiral Ferrocenyl Aminals;233
1.7.1.7.3.1.6;1.7.8.17.1.6 Method 6: Chiral Ferrocenyl Sulfoxides;233
1.7.1.7.3.1.7;1.7.8.17.1.7 Method 7: Chiral 1,2-Disubstituted Ferrocenes by Diastereoselective Functionalization;234
1.7.1.7.3.1.7.1;1.7.8.17.1.7.1 Variation 1: From 1-Ferrocenyl-N,N-dimethylethylamine;234
1.7.1.7.3.1.7.2;1.7.8.17.1.7.2 Variation 2: From (4,5-Dihydrooxazol-2-yl)ferrocenes;236
1.7.1.7.3.1.7.3;1.7.8.17.1.7.3 Variation 3: From Chiral Ferrocenyl Acetals and Aminals;237
1.7.1.7.3.1.7.4;1.7.8.17.1.7.4 Variation 4: From Chiral Ferrocenyl Sulfoxides;238
1.7.1.7.3.1.8;1.7.8.17.1.8 Method 8: C--C Bond Formation by Substitution of Ferrocenyl Alcohols;238
1.7.1.7.3.1.9;1.7.8.17.1.9 Method 9: Cross-Coupling Reactions of Iodoferrocene and Ferrocenylboronic Acid;239
1.7.1.7.3.1.10;1.7.8.17.1.10 Method 10: Chiral 1,2-Disubstituted Ferrocenes via Enantioselective Sparteine-Mediated Lithiation;240
1.7.1.7.3.1.11;1.7.8.17.1.11 Method 11: 1,1',2-Trisubstituted Ferrocenes (BPPF-Type Ligands);240
1.7.1.7.3.1.12;1.7.8.17.1.12 Method 12: Tetrasubstituted Ferrocenes from 1,1'-Bis(1-methoxyalkyl)ferrocenes;240
1.7.1.7.3.1.13;1.7.8.17.1.13 Method 13: Chiral Biferrocenes;241
1.7.1.7.3.2;1.7.8.17.2 Applications of Ferrocenes in Organic Synthesis;241
1.7.1.7.3.2.1;1.7.8.17.2.1 Method 1: Catalytic Enantioselective Hydrogenation;242
1.7.1.7.3.2.2;1.7.8.17.2.2 Method 2: Catalytic Enantioselective Hydroboration;249
1.7.1.7.3.2.3;1.7.8.17.2.3 Method 3: Catalytic Enantioselective Hydrosilylation;250
1.7.1.7.3.2.4;1.7.8.17.2.4 Method 4: Catalytic Enantioselective Allylic Substitution;251
1.7.1.7.3.2.5;1.7.8.17.2.5 Method 5: Catalytic Enantioselective Aldol Reactions;253
1.7.1.7.3.2.6;1.7.8.17.2.6 Method 6: Diethylzinc Addition to Aldehydes;253
1.7.1.7.3.2.7;1.7.8.17.2.7 Method 7: Michael Addition Reactions;255
1.7.1.7.3.2.8;1.7.8.17.2.8 Method 8: Asymmetric Arylation of Aldehydes;255
1.7.1.7.3.2.9;1.7.8.17.2.9 Method 9: Metal-Catalyzed [3 + 2] Cycloaddition;255
1.7.1.7.3.2.10;1.7.8.17.2.10 Method 10: Ring Opening of Azabenzonorbornadienes;257
1.7.1.7.3.2.11;1.7.8.17.2.11 Method 11: Applications as Bioactives;257
1.7.1.7.3.2.12;1.7.8.17.2.12 Method 12: Applications as Bioconjugates;260
1.7.1.7.3.2.13;1.7.8.17.2.13 Method 13: Applications in Electron Reservoirs and in Nonlinear Optics (NLO);262
1.7.1.7.3.2.14;1.7.8.17.2.14 Method 14: Applications in Oligomers and Polymers;268
1.7.1.7.3.2.15;1.7.8.17.2.15 Method 15: Applications as Functional Devices;270
1.8;Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au);282
1.8.1;3.1 Product Class 1: Organometallic Complexes of Zinc;282
1.8.1.1;3.1.11 Organometallic Complexes of Zinc;282
1.8.1.1.1;3.1.11.1 Zinc-Catalyzed Organic Transformations;282
1.8.1.1.1.1;3.1.11.1.1 Method 1: Zinc-Catalyzed C--C Bond-Forming Reactions;282
1.8.1.1.1.1.1;3.1.11.1.1.1 Variation 1: Zinc-Catalyzed Aldol Reaction;282
1.8.1.1.1.1.2;3.1.11.1.1.2 Variation 2: Zinc-Catalyzed Henry Reaction;296
1.8.1.1.1.1.3;3.1.11.1.1.3 Variation 3: Zinc-Catalyzed Mannich Reaction;301
1.8.1.1.1.1.4;3.1.11.1.1.4 Variation 4: Zinc-Catalyzed Michael Reaction;306
1.8.1.1.1.1.5;3.1.11.1.1.5 Variation 5: Zinc-Catalyzed Friedel–Crafts Reactions;311
1.8.1.1.1.1.6;3.1.11.1.1.6 Variation 6: Zinc-Catalyzed Alkynylation Reactions;317
1.8.1.1.1.1.7;3.1.11.1.1.7 Variation 7: Other Zinc-Catalyzed C--C Bond-Forming Reactions;321
1.8.1.1.1.2;3.1.11.1.2 Method 2: Zinc-Catalyzed C--N Bond-Forming Reactions;329
1.8.1.1.1.3;3.1.11.1.3 Method 3: Zinc-Catalyzed C--O Bond-Forming Reactions;350
1.8.1.1.1.4;3.1.11.1.4 Method 4: Zinc-Catalyzed Reduction Reactions;355
1.8.1.1.1.5;3.1.11.1.5 Method 5: Zinc-Catalyzed Oxidation Reactions;366
1.9;Volume 4: Compounds of Group 15 (As, Sb, Bi) and Silicon Compounds;378
1.9.1;4.4 Product Class 4: Silicon Compounds;378
1.9.1.1;4.4.46 Product Subclass 46: Siloles;378
1.9.1.1.1;Synthesis of Product Subclass 46;379
1.9.1.1.1.1;4.4.46.1 Ring Synthesis from Acyclic Compounds;379
1.9.1.1.1.1.1;4.4.46.1.1 Method 1: Formation of One Si--C Bond of the Silole;379
1.9.1.1.1.1.1.1;4.4.46.1.1.1 Variation 1: Nucleophilic Addition of a Carbanion to the Silicon Atom;379
1.9.1.1.1.1.1.2;4.4.46.1.1.2 Variation 2: Intramolecular Hydrosilylation of Alkynes;379
1.9.1.1.1.1.1.3;4.4.46.1.1.3 Variation 3: Reductive Cyclization of Alkynes;380
1.9.1.1.1.1.1.4;4.4.46.1.1.4 Variation 4: Nucleophilic Addition of a Silyl Anion to Alkynes;381
1.9.1.1.1.1.1.5;4.4.46.1.1.5 Variation 5: Electrophilic Substitution of an Aromatic Ring with a Silyl Cation;382
1.9.1.1.1.1.1.6;4.4.46.1.1.6 Variation 6: Rhodium-Catalyzed Intramolecular trans-Bis-silylation of Alkynes;382
1.9.1.1.1.1.1.7;4.4.46.1.1.7 Variation 7: Gold-Catalyzed Intramolecular trans-Allylsilylation of Alkynes;383
1.9.1.1.1.1.1.8;4.4.46.1.1.8 Variation 8: Palladium-Catalyzed Intramolecular C(sp2)--Si Coupling via Cleavage of a C(sp3)--Si Bond;383
1.9.1.1.1.1.2;4.4.46.1.2 Method 2: Formation of C--C Bonds of the Silole;384
1.9.1.1.1.1.2.1;4.4.46.1.2.1 Variation 1: Reductive Cyclization of Dialkynylsilanes;384
1.9.1.1.1.1.2.2;4.4.46.1.2.2 Variation 2: Intramolecular Cross-Coupling Reaction of Diarylsilanes;386
1.9.1.1.1.1.2.3;4.4.46.1.2.3 Variation 3: Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Silicon-Bridged Diynes with Alkynes;387
1.9.1.1.1.1.2.4;4.4.46.1.2.4 Variation 4: Ring-Closing Metathesis of Alkenyl(2-alkenylphenyl)silanes;388
1.9.1.1.1.1.3;4.4.46.1.3 Method 3: Formation of Two Si--C Bonds of the Silole;389
1.9.1.1.1.1.3.1;4.4.46.1.3.1 Variation 1: Nucleophilic Attack of Dianions at the Silicon Atom;389
1.9.1.1.1.1.3.2;4.4.46.1.3.2 Variation 2: Transmetalation of Zirconium-Containing Metallacycles;391
1.9.1.1.1.1.3.3;4.4.46.1.3.3 Variation 3: Ruthenium-Catalyzed Double Hydrosilylation of Buta-1,3-diynes;392
1.9.1.1.1.1.4;4.4.46.1.4 Method 4: Formation of One Si--C and One C--C Bond of the Silole;392
1.9.1.1.1.1.4.1;4.4.46.1.4.1 Variation 1: Rhodium-Catalyzed Coupling of (2-Silylphenyl)boronic Acids with Alkynes;392
1.9.1.1.1.1.4.2;4.4.46.1.4.2 Variation 2: Palladium-Catalyzed Intermolecular Coupling of 2-Silylaryl Bromides with Alkynes;393
1.9.1.1.1.1.5;4.4.46.1.5 Method 5: Formation of Two Si--C Bonds and One C--C Bond of the Silole;393
1.9.1.1.1.1.5.1;4.4.46.1.5.1 Variation 1: Palladium-Catalyzed Coupling of Silylboronic Esters with Alkynes;393
1.9.1.1.1.1.6;4.4.46.1.6 Method 6: Rearrangement of a Rhodium–Alkene Complex;394
1.9.1.1.1.2;4.4.46.2 Ring Synthesis by Transformation from Another Ring System;395
1.9.1.1.1.2.1;4.4.46.2.1 Method 1: Ring Expansion of Silirenes;395
1.10;Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides; Carboxylic Acids and Acid Salts; Esters, and Lactones; Peroxy Acids and R(CO)OX Compounds; R(CO)X, X = S, Se, Te;398
1.10.1;20.5 Product Class 5: Carboxylic Acid Esters;398
1.10.1.1;20.5.9.2 2,2-Diheteroatom-Substituted Alkanoic Acid Esters;398
1.10.1.1.1;20.5.9.2.1 Method 1: Formation from ß,.-Unsaturated a-Oxo Esters;398
1.10.1.1.2;20.5.9.2.2 Method 2: Formation from a-Sulfanyl and a-Thioxo Esters;402
1.10.1.1.2.1;20.5.9.2.2.1 Variation 1: Thia-Diels–Alder Reactions of Dithiooxalates;402
1.10.1.1.2.2;20.5.9.2.2.2 Variation 2: Desulfurizing Difluorination of 2-Sulfanylacetates;403
1.10.1.1.3;20.5.9.2.3 Method 3: Formation of 2,2-Dinitrogen-Substituted Esters;404
1.10.1.1.3.1;20.5.9.2.3.1 Variation 1: Formation of 2,2-Dinitrogen-Substituted Esters by Displacement of Halide;404
1.10.1.1.3.2;20.5.9.2.3.2 Variation 2: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to a,ß-Unsaturated Esters;405
1.10.1.1.3.3;20.5.9.2.3.3 Variation 3: Formation of 2,2-Dinitrogen-Substituted Esters by Addition to Imino- and Azocarboxylates;406
1.10.1.1.3.4;20.5.9.2.3.4 Variation 4: Formation of 2,2-Dinitrogen-Substituted Esters by a-Nitration of Esters;407
1.10.1.1.4;20.5.9.2.4 Method 4: Formation by Halogenation of ß-Oxo Esters;408
1.10.1.1.5;20.5.9.2.5 Method 5: Formation by Nucleophilic Attack of the a-Carbon of Alkanoic Acid Esters;411
1.10.1.1.5.1;20.5.9.2.5.1 Variation 1: Metal-Mediated C--C Bond Formation from Trihaloacetates and 2,2-Difluoro-2-silylacetates;411
1.10.1.1.5.2;20.5.9.2.5.2 Variation 2: Nucleophilic Substitution at the a-Carbon of Dihaloacetates or Diheteroatom-Substituted Ketene Silyl Acetals;414
1.10.1.1.5.3;20.5.9.2.5.3 Variation 3: Nucleophilic Substitution of Alkyl Chloroformates;415
1.10.1.1.6;20.5.9.2.6 Method 6: Formation of a,a-Dihalo Esters by Radical-Mediated Transformations;416
1.10.1.1.7;20.5.9.2.7 Method 7: Difluorination of Acid Chlorides;419
1.11;Volume 26: Ketones;424
1.11.1;26.8 Product Class 8: Aryl Ketones;424
1.11.1.1;26.8.4 Aryl Ketones;424
1.11.1.1.1;26.8.4.1 Synthesis from Arenes;424
1.11.1.1.1.1;26.8.4.1.1 Friedel–Crafts Acylation;424
1.11.1.1.1.1.1;26.8.4.1.1.1 Method 1: Acylation Using Acid Chlorides or Anhydrides;425
1.11.1.1.1.1.1.1;26.8.4.1.1.1.1 Variation 1: With p-Block Metal Catalysts;425
1.11.1.1.1.1.1.2;26.8.4.1.1.1.2 Variation 2: With Transition-Metal Catalysts;427
1.11.1.1.1.1.1.3;26.8.4.1.1.1.3 Variation 3: With Lanthanides and Actinides;430
1.11.1.1.1.1.1.4;26.8.4.1.1.1.4 Variation 4: With Solid-Supported Catalysts;432
1.11.1.1.1.1.1.5;26.8.4.1.1.1.5 Variation 5: With Brønsted Acid Catalysts;433
1.11.1.1.1.1.2;26.8.4.1.1.2 Method 2: Acylation Using Carboxylic Acids;435
1.11.1.1.1.1.3;26.8.4.1.1.3 Method 3: Acylation Using Esters;437
1.11.1.1.2;26.8.4.2 Synthesis from Arylmetals;438
1.11.1.1.2.1;26.8.4.2.1 Method 1: Synthesis from Arenes via C--H Activation;439
1.11.1.1.2.2;26.8.4.2.2 Method 2: Synthesis from Arylboron Reagents;440
1.11.1.1.2.2.1;26.8.4.2.2.1 Variation 1: With Acid Chlorides or Anhydrides;440
1.11.1.1.2.2.2;26.8.4.2.2.2 Variation 2: With Esters;441
1.11.1.1.2.2.3;26.8.4.2.2.3 Variation 3: With Nitriles;442
1.11.1.1.2.2.4;26.8.4.2.2.4 Variation 4: With Aldehydes;443
1.11.1.1.2.3;26.8.4.2.3 Method 3: Synthesis from Carboxylic Acids;444
1.11.1.1.2.4;26.8.4.2.4 Method 4: Synthesis from Sulfinic Acids;444
1.11.1.1.3;26.8.4.3 Synthesis from Aryl Halides;445
1.11.1.1.3.1;26.8.4.3.1 Method 1: Synthesis via Organometallic Reagents;445
1.11.1.1.3.1.1;26.8.4.3.1.1 Variation 1: With Amides;445
1.11.1.1.3.1.2;26.8.4.3.1.2 Variation 2: With Acid Chlorides;447
1.11.1.1.3.1.3;26.8.4.3.1.3 Variation 3: With Vinyl Ethers/Acetates/Enamines/Enamides;449
1.11.1.1.3.1.4;26.8.4.3.1.4 Variation 4: With Hydrazones;451
1.11.1.1.3.2;26.8.4.3.2 Method 2: Carbonylation;452
1.11.1.1.4;26.8.4.4 Synthesis from Acyl Anion Equivalents;457
1.11.1.1.5;26.8.4.5 Synthesis via Oxidation;462
1.11.1.1.5.1;26.8.4.5.1 Method 1: Oxidation of Benzylic Alcohols;462
1.11.1.1.5.2;26.8.4.5.2 Method 2: Oxidation of Aryl Methylenes;465
1.11.1.1.6;26.8.4.6 Synthesis via Rearrangement;466
1.11.1.1.6.1;26.8.4.6.1 Method 1: Fries Rearrangement;466
1.11.1.1.6.2;26.8.4.6.2 Method 2: Alkyne Hydration/Rearrangement;467
1.11.1.1.7;26.8.4.7 Synthesis via Cycloaddition of Arynes;468
1.12;Author Index;476
1.13;Abbreviations;516
1.14;List of All Volumes;522