E-Book, Englisch, 558 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
E-Book, Englisch, 558 Seiten, PDF, Format (B × H): 170 mm x 240 mm
Reihe: Science of Synthesis
ISBN: 978-3-13-178731-6
Verlag: Thieme
Format: PDF
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)
Content of this volume: Organometallic Complexes of Gold, Benzylstannanes, Allylstannanes, Furans, Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides, Synthesis with Retention of the Functional Group, Alkanesulfonic Acids and Acyclic Derivatives.
Zielgruppe
Wissenschaftler
Autoren/Hrsg.
Weitere Infos & Material
1;Science of Synthesis: Knowledge Updates 2011/2;1
1.1;Title page;5
1.2;Imprint;7
1.3;Preface;8
1.4;Abstracts;10
1.5;Overview;14
1.6;Table of Contents;16
1.7;Volume 3: Compounds of Groups 12 and 11 (Zn, Cd, Hg, Cu, Ag, Au);32
1.7.1;3.6 Product Class 6: Organometallic Complexes of Gold;32
1.7.1.1;3.6.11 Organometallic Complexes of Gold (Update 1);32
1.7.1.1.1;3.6.11.1 Gold-Catalyzed Cycloisomerizations of Enynes;32
1.7.1.1.1.1;3.6.11.1.1 Method 1: Cycloisomerization of 1,6-Enynes;34
1.7.1.1.1.1.1;3.6.11.1.1.1 Variation 1: Formation of 1,3-Dienes;34
1.7.1.1.1.1.2;3.6.11.1.1.2 Variation 2: Formation of Cyclobutenes or Cyclobutanones;39
1.7.1.1.1.1.3;3.6.11.1.1.3 Variation 3: Formation of Cyclopropyl Rings;41
1.7.1.1.1.1.4;3.6.11.1.1.4 Variation 4: Formation of Fused Rings by Cycloisomerization of Substituted 1,6-Enynes by Friedel–Crafts-Type Processes;43
1.7.1.1.1.2;3.6.11.1.2 Method 2: Cycloisomerization of Dienynes;46
1.7.1.1.1.3;3.6.11.1.3 Method 3: Cycloisomerization of Oxo-1,6-enynes;49
1.7.1.1.1.3.1;3.6.11.1.3.1 Variation 1: Applications of the Cycloisomerization of Oxo-1,6-enynes in Total Synthesis;53
1.7.1.1.1.4;3.6.11.1.4 Method 4: Inter- and Intramolecular Addition of Nucleophiles to 1,6-Enynes;55
1.7.1.1.1.5;3.6.11.1.5 Method 5: Cycloisomerization of 1,5-Enynes;64
1.7.1.1.1.6;3.6.11.1.6 Method 6: Inter- and Intramolecular Addition of Nucleophiles to 1,5-Enynes;76
1.7.1.1.1.7;3.6.11.1.7 Method 7: Cycloisomerization of 1,n-Enynes via Migration of Propargyl Groups;80
1.7.1.1.1.8;3.6.11.1.8 Method 8: Cycloisomerization of 1,7- and Higher Enynes;90
1.7.1.2;3.6.12 Organometallic Complexes of Gold (Update 2);102
1.7.1.2.1;3.6.12.1 Gold-Catalyzed Propargylic Rearrangements;102
1.7.1.2.1.1;3.6.12.1.1 Synthetic Method Development Based on Gold-Catalyzed 3,3-Rearrangements of Propargylic Carboxylates;102
1.7.1.2.1.1.1;3.6.12.1.1.1 Reactions via Gold-Containing Oxocarbenium Intermediates;106
1.7.1.2.1.1.1.1;3.6.12.1.1.1.1 Method 1: Reactions Using Indole-3-acetyl as the Acyl Group;107
1.7.1.2.1.1.1.2;3.6.12.1.1.1.2 Method 2: Reactions of Substrates with Functionality at the Alkyne Terminus of the Propargylic Group;109
1.7.1.2.1.1.1.2.1;3.6.12.1.1.1.2.1 Variation 1: Using Enyne Substrates;110
1.7.1.2.1.1.1.2.2;3.6.12.1.1.1.2.2 Variation 2: Using 4-(Trimethylsilyl)but-2-ynyl Substrates;112
1.7.1.2.1.1.1.3;3.6.12.1.1.1.3 Method 3: Reactions of 1-Arylpropargylic Carboxylates;112
1.7.1.2.1.1.1.4;3.6.12.1.1.1.4 Method 4: Reactions with Hydrolytic Treatment;113
1.7.1.2.1.1.1.4.1;3.6.12.1.1.1.4.1 Variation 1: Formation of a-Unsubstituted Enones;113
1.7.1.2.1.1.1.4.2;3.6.12.1.1.1.4.2 Variation 2: Formation of a-Iodo- or a-Bromoenones;114
1.7.1.2.1.1.1.5;3.6.12.1.1.1.5 Method 5: Intramolecular Acyl Migration;115
1.7.1.2.1.1.1.6;3.6.12.1.1.1.6 Method 6: Reactions Incorporating Gold(I)/Gold(III) Catalysis;117
1.7.1.2.1.1.1.6.1;3.6.12.1.1.1.6.1 Variation 1: Gold-Catalyzed Oxidative Homocoupling;117
1.7.1.2.1.1.1.6.2;3.6.12.1.1.1.6.2 Variation 2: Gold-Catalyzed Oxidative Cross-Coupling Reaction;118
1.7.1.2.1.1.1.6.3;3.6.12.1.1.1.6.3 Variation 3: Gold-Catalyzed Oxidative C--O Bond Formation;119
1.7.1.2.1.1.2;3.6.12.1.1.2 Nucleophilic Attack on the (Acyloxy)allene at the ß- or .-Position;121
1.7.1.2.1.1.2.1;3.6.12.1.1.2.1 Method 1: Nucleophilic Attack at the .-Position;122
1.7.1.2.1.1.2.2;3.6.12.1.1.2.2 Method 2: Nucleophilic Attack at the ß-Position;125
1.7.1.2.1.1.3;3.6.12.1.1.3 (Acyloxy)allenes as Nucleophiles;126
1.7.1.2.1.1.4;3.6.12.1.1.4 (Acyloxy)allenes as All-Carbon 1,3-Dipoles;129
1.7.1.3;3.6.13 Organometallic Complexes of Gold (Update 3);132
1.7.1.3.1;3.6.13.1 Gold-Catalyzed Coupling Reactions;132
1.7.1.3.1.1;3.6.13.1.1 Oxidative Coupling with Gold(III) as a Stoichiometric Oxidant;132
1.7.1.3.1.1.1;3.6.13.1.1.1 Method 1: Reductive Elimination from Stoichiometric Organogold(III) Complexes;132
1.7.1.3.1.1.2;3.6.13.1.1.2 Method 2: Oxidative Chlorination of Nonactivated Arenes;133
1.7.1.3.1.1.3;3.6.13.1.1.3 Method 3: Oxidative Alkynylation of Nonactivated Arenes;134
1.7.1.3.1.1.4;3.6.13.1.1.4 Method 4: Oxidative Amination of Nonactivated Arenes;135
1.7.1.3.1.1.5;3.6.13.1.1.5 Method 5: Oxidative Homocoupling via C--H Bond Functionalization;135
1.7.1.3.1.1.6;3.6.13.1.1.6 Method 6: Homocoupling as a Side Reaction in Cyclizations Catalyzed by Gold(III);137
1.7.1.3.1.2;3.6.13.1.2 Gold-Catalyzed Cross Coupling with Substrates as Oxidants;139
1.7.1.3.1.2.1;3.6.13.1.2.1 Method 1: Gold-Catalyzed Suzuki Reactions;139
1.7.1.3.1.2.2;3.6.13.1.2.2 Method 2: Gold-Catalyzed Sonogashira Reactions;140
1.7.1.3.1.2.3;3.6.13.1.2.3 Method 3: Gold-Catalyzed Alkynylation of Heterocycles Using Alkynyliodine(III) Reagents;142
1.7.1.3.1.3;3.6.13.1.3 Gold-Catalyzed Oxidative Homocoupling with External Oxidants;146
1.7.1.3.1.3.1;3.6.13.1.3.1 Method 1: Homocoupling of Nonactivated Arenes Using (Diacetoxyiodo)benzene;147
1.7.1.3.1.3.2;3.6.13.1.3.2 Method 2: Synthesis of Dicoumarins via Cyclization–Homocoupling Using tert-Butyl Hydroperoxide;148
1.7.1.3.1.3.3;3.6.13.1.3.3 Method 3: Cyclization–Homocoupling of 2-Alkynylphenols with (Diacetoxyiodo)benzene;149
1.7.1.3.1.3.4;3.6.13.1.3.4 Method 4: Homocoupling of Propargyl Acetates Using Selectfluor;150
1.7.1.3.1.3.5;3.6.13.1.3.5 Method 5: Homocoupling from Stoichiometric Organogold(I) Complexes Using Electrophilic Fluorinating Reagents;152
1.7.1.3.1.4;3.6.13.1.4 Gold-Catalyzed Oxidative Cross Coupling with External Oxidants;153
1.7.1.3.1.4.1;3.6.13.1.4.1 Method 1: Oxidative Alkynylation of Nonactivated Arenes Using (Diacetoxyiodo)benzene;153
1.7.1.3.1.4.2;3.6.13.1.4.2 Method 2: Oxidative Diamination of Alkenes Using (Diacetoxyiodo)benzene;155
1.7.1.3.1.4.3;3.6.13.1.4.3 Method 3: Synthesis of 1-Carboxyvinyl Ketones via Oxidative C--O Bond Formation Using Selectfluor;157
1.7.1.3.1.4.4;3.6.13.1.4.4 Method 4: Oxidative Arylation with Arylboronic Acids Using Selectfluor;159
1.7.1.3.1.4.4.1;3.6.13.1.4.4.1 Variation 1: Synthesis of a-Aryl Enones from Propargyl Acetates;159
1.7.1.3.1.4.4.2;3.6.13.1.4.4.2 Variation 2: Oxidative Carboheterofunctionalization of Alkenes;161
1.7.1.3.1.4.4.3;3.6.13.1.4.4.3 Variation 3: Synthesis of a-Aryl a-Fluoro Ketones via Oxidative Functionalization of Alkynes;165
1.7.1.3.1.4.5;3.6.13.1.4.5 Method 5: Oxidative Arylation with Arylsilanes Using Selectfluor;166
1.7.1.3.1.4.6;3.6.13.1.4.6 Method 6: Oxidative Aminooxygenation and Aminoamidation of Alkenes Using Selectfluor or (Diacetoxyiodo)benzene;167
1.7.1.3.1.4.7;3.6.13.1.4.7 Method 7: Cascade Cyclization–Intramolecular Arylation with Nonactivated Arenes Using External Oxidants;171
1.7.1.3.1.4.7.1;3.6.13.1.4.7.1 Variation 1: Cascade Cyclization–Intramolecular Arylation of Benzyl-Substituted Allenoates Using Selectfluor;171
1.7.1.3.1.4.7.2;3.6.13.1.4.7.2 Variation 2: Cascade Cyclization–Intramolecular Arylation of Alkenes;175
1.7.1.3.1.4.8;3.6.13.1.4.8 Method 8: Cascade Cyclization–Oxidative Alkynylation of Allenoates Using Selectfluor;178
1.7.1.3.1.4.9;3.6.13.1.4.9 Method 9: Isolation of a Gold(III) Fluoride Complex and Its Use in Cross Coupling;180
1.8;Volume 5: Compounds of Group 14 (Ge, Sn, Pb);184
1.8.1;5.2 Product Class 2: Tin Compounds;184
1.8.1.1;5.2.27 Product Subclass 27: Benzylstannanes;184
1.8.1.1.1;Synthesis of Product Subclass 27;184
1.8.1.1.1.1;5.2.27.1 Method 1: Synthesis from (Trialkylstannyl)- or (Triarylstannyl)lithiums;184
1.8.1.1.1.1.1;5.2.27.1.1 Variation 1: From (Trialkylstannyl)- or (Triarylstannyl)lithiums and Benzyl Halides;184
1.8.1.1.1.1.2;5.2.27.1.2 Variation 2: From (Trialkylstannyl)lithiums or (Trialkylstannyl)sodiums and a,ß-Unsaturated Esters;185
1.8.1.1.1.2;5.2.27.2 Method 2: Synthesis from Organomagnesium Derivatives and Organotin Halides;186
1.8.1.1.1.2.1;5.2.27.2.1 Variation 1: From Benzyl Halides by Barbier Reactions;186
1.8.1.1.1.2.2;5.2.27.2.2 Variation 2: Sonication-Promoted Barbier Reactions;187
1.8.1.1.1.2.3;5.2.27.2.3 Variation 3: From Benzyl Halides by Grignard Reactions;188
1.8.1.1.1.3;5.2.27.3 Method 3: Synthesis from Benzyllithiums and Stannyl Halides;189
1.8.1.1.1.3.1;5.2.27.3.1 Variation 1: From Benzyllithiums without Directing Groups;189
1.8.1.1.1.3.2;5.2.27.3.2 Variation 2: From Benzyllithiums with Directing Groups;191
1.8.1.1.1.3.3;5.2.27.3.3 Variation 3: From Benzyllithiums Prepared by Carbolithiation;192
1.8.1.1.1.3.4;5.2.27.3.4 Variation 4: From Diastereomerically Enriched Benzyllithiums Containing a Rotationally Restricted Amide;193
1.8.1.1.1.3.5;5.2.27.3.5 Variation 5: From Diastereomerically Enriched Benzyllithiums Prepared from Enantioenriched Sulfoxides;194
1.8.1.1.1.3.6;5.2.27.3.6 Variation 6: From Enantiomerically Enriched Benzyllithiums Prepared by Enantioselective Deprotonation;195
1.8.1.1.1.4;5.2.27.4 Method 4: Synthesis from Benzylzincs and Stannyl Halides;197
1.8.1.1.1.4.1;5.2.27.4.1 Variation 1: From Benzyl Halides by Barbier Reactions;197
1.8.1.1.1.4.2;5.2.27.4.2 Variation 2: From Benzylzincs via Transmetalation to Benzylcuprates;198
1.8.1.1.1.5;5.2.27.5 Method 5: Synthesis from Arylzincs and (Iodomethyl)stannanes;200
1.8.1.1.1.6;5.2.27.6 Method 6: Synthesis from Stannyl Anion Equivalents and Carbonyl Derivatives;201
1.8.1.1.1.6.1;5.2.27.6.1 Variation 1: Addition of Stannyllithiums to Aldehydes;201
1.8.1.1.1.6.2;5.2.27.6.2 Variation 2: Addition of Tributyl(trimethylsilyl)stannane to Aldehydes;201
1.8.1.1.1.6.3;5.2.27.6.3 Variation 3: Addition of Stannyllithiums or Stannylzincs to Enantiomerically Enriched N-Sulfinylimines;202
1.8.1.1.1.7;5.2.27.7 Method 7: Palladium-Catalyzed Insertion of Benzyl Halides into Hexaalkyldistannanes;204
1.8.1.1.1.8;5.2.27.8 Method 8: Synthesis by Silicon–Tin Transmetalation;205
1.8.1.1.1.9;5.2.27.9 Method 9: Hydrostannylation of Alkenes;205
1.8.1.1.1.9.1;5.2.27.9.1 Variation 1: Radical Hydrostannylation of Alkenes;205
1.8.1.1.1.9.2;5.2.27.9.2 Variation 2: Palladium-Catalyzed Hydrostannylation of Alkenes;206
1.8.1.1.1.10;5.2.27.10 Method 10: Palladium-Catalyzed Distannylation of o-Quinodimethanes;207
1.8.1.1.1.11;5.2.27.11 Method 11: Synthesis by Sommelet–Hauser Rearrangement of Tetraalkylammonium Salts;208
1.8.1.1.2;Applications of Product Subclass 27 in Organic Synthesis;210
1.8.1.1.2.1;5.2.27.12 Method 12: Transmetalation;210
1.8.1.1.2.1.1;5.2.27.12.1 Variation 1: Transmetalation To Afford Alkali Metal Derivatives;210
1.8.1.1.2.1.2;5.2.27.12.2 Variation 2: Transmetalation To Afford Other Metal Derivatives;212
1.8.1.1.2.2;5.2.27.13 Method 13: Stille Couplings;212
1.8.1.1.2.2.1;5.2.27.13.1 Variation 1: Coupling to Aryl Bromides;212
1.8.1.1.2.2.2;5.2.27.13.2 Variation 2: Coupling to Vinyl Trifluoromethanesulfonates;213
1.8.1.1.2.2.3;5.2.27.13.3 Variation 3: Coupling to Acyl Chlorides;214
1.8.1.1.2.3;5.2.27.14 Method 14: Palladium-Free Coupling to a-Oxo Acid Chlorides;215
1.8.1.1.2.4;5.2.27.15 Method 15: Nucleophilic Addition to N-(Alkoxycarbonyl)pyridinium Salts;215
1.8.1.1.2.5;5.2.27.16 Method 16: Three-Component Coupling of Imines, Acid Chlorides, and Benzylstannanes;216
1.8.1.2;5.2.28 Product Subclass 28: Allylstannanes;220
1.8.1.2.1;Synthesis of Product Subclass 28;220
1.8.1.2.1.1;5.2.28.1 Method 1: Synthesis from Allylmagnesium Reagents and Stannyl Halides;220
1.8.1.2.1.1.1;5.2.28.1.1 Variation 1: Via Preformed Allyl Grignards;221
1.8.1.2.1.1.2;5.2.28.1.2 Variation 2: Via Barbier Reaction;222
1.8.1.2.1.1.3;5.2.28.1.3 Variation 3: Sonication-Promoted Barbier Reactions;223
1.8.1.2.1.1.4;5.2.28.1.4 Variation 4: Sonication-Promoted Barbier Reactions with Hexabutyldistannoxane;224
1.8.1.2.1.2;5.2.28.2 Method 2: Synthesis from Allyllithium Derivatives and Stannyl Halides;225
1.8.1.2.1.2.1;5.2.28.2.1 Variation 1: Via Alkene Deprotonation;225
1.8.1.2.1.2.2;5.2.28.2.2 Variation 2: Via Lithium–Halogen Exchange;227
1.8.1.2.1.2.3;5.2.28.2.3 Variation 3: From Allyl Thioethers;228
1.8.1.2.1.2.4;5.2.28.2.4 Variation 4: From Enantiomerically Enriched Allyllithiums Prepared by Enantioselective Deprotonation;229
1.8.1.2.1.3;5.2.28.3 Method 3: Synthesis from Allylzincs and Stannyl Halides;230
1.8.1.2.1.4;5.2.28.4 Method 4: Synthesis by Silicon–Tin Transmetalation;232
1.8.1.2.1.5;5.2.28.5 Method 5: Synthesis from Stannyl Anion Equivalents and Allylic Halides, Sulfides, and Methanesulfonates;233
1.8.1.2.1.5.1;5.2.28.5.1 Variation 1: Via Stannyllithiums;233
1.8.1.2.1.5.2;5.2.28.5.2 Variation 2: Via Stannylcopper Compounds;236
1.8.1.2.1.5.3;5.2.28.5.3 Variation 3: Via Stannylpalladium Species;238
1.8.1.2.1.6;5.2.28.6 Method 6: Synthesis from Allylic Acetates, Benzoates, and Phosphates;238
1.8.1.2.1.6.1;5.2.28.6.1 Variation 1: Palladium-Catalyzed Reaction of Diethyl(tributylstannyl)aluminum and Allylic Acetates;238
1.8.1.2.1.6.2;5.2.28.6.2 Variation 2: Palladium-Catalyzed Reaction of Diethyl(tributylstannyl)aluminum and Allylic Phosphates;239
1.8.1.2.1.6.3;5.2.28.6.3 Variation 3: Palladium-Catalyzed Reduction of Allylic Acetates;241
1.8.1.2.1.6.4;5.2.28.6.4 Variation 4: Copper-Catalyzed Reaction of Bis(tributylstannyl)zinc and Allylic Benzoates;241
1.8.1.2.1.6.5;5.2.28.6.5 Variation 5: Palladium-Catalyzed Reaction between Samarium(II) Iodide, Stannyl Halides, and Allylic Acetates;243
1.8.1.2.1.7;5.2.28.7 Method 7: Synthesis from Allylic Sulfur Derivatives;244
1.8.1.2.1.7.1;5.2.28.7.1 Variation 1: Via Sulfides;244
1.8.1.2.1.7.2;5.2.28.7.2 Variation 2: Via Allylic Sulfones;245
1.8.1.2.1.7.3;5.2.28.7.3 Variation 3: Via Allylic S-Substituted S-Methyl Dithiocarbonates;248
1.8.1.2.1.8;5.2.28.8 Method 8: Synthesis via Wittig Reaction;250
1.8.1.2.1.9;5.2.28.9 Method 9: Synthesis of a-Substituted Allylstannanes by Selenoxide Elimination;252
1.8.1.2.1.10;5.2.28.10 Method 10: Synthesis from Stannyl Anion Equivalents and a,ß-Unsaturated Carbonyl Derivatives;253
1.8.1.2.1.10.1;5.2.28.10.1 Variation 1: 1,2-Addition to a,ß-Unsaturated Aldehydes and Ketones;253
1.8.1.2.1.10.2;5.2.28.10.2 Variation 2: 1,4-Addition to a,ß-Unsaturated Ketones Followed by Enamine Formation;255
1.8.1.2.1.10.3;5.2.28.10.3 Variation 3: Via ß-Stannyl Enolate Esters Prepared by 1,4-Addition to a,ß-Unsaturated Esters;257
1.8.1.2.1.11;5.2.28.11 Method 11: Synthesis from Allenes;259
1.8.1.2.1.11.1;5.2.28.11.1 Variation 1: Via Stannylcupration of Allenes;259
1.8.1.2.1.11.2;5.2.28.11.2 Variation 2: Palladium-Catalyzed Addition of Distannanes and Silastannanes to Allenes;261
1.8.1.2.1.11.3;5.2.28.11.3 Variation 3: Hydrostannylation of Allenes;263
1.8.1.2.1.11.4;5.2.28.11.4 Variation 4: Palladium-Catalyzed Acylstannylation of Allenes;265
1.8.1.2.1.11.5;5.2.28.11.5 Variation 5: Palladium-Catalyzed Distannylation of In Situ Generated Allenes;266
1.8.1.2.1.12;5.2.28.12 Method 12: Synthesis from Vinylstannanes;266
1.8.1.2.1.12.1;5.2.28.12.1 Variation 1: From Vinylstannanes and Ethene;266
1.8.1.2.1.12.2;5.2.28.12.2 Variation 2: Via Lewis Acid Catalyzed Addition of Alkylcuprates to Vinylstannane Acetals;267
1.8.1.2.1.13;5.2.28.13 Method 13: Synthesis from 1,3-Dienes;269
1.8.1.2.1.13.1;5.2.28.13.1 Variation 1: Platinum-Catalyzed Silylstannylation of 1,3-Dienes;269
1.8.1.2.1.13.2;5.2.28.13.2 Variation 2: Nickel-Catalyzed Acylstannylation of 1,3-Dienes;269
1.8.1.2.1.14;5.2.28.14 Method 14: Synthesis from Allylstannanes;270
1.8.1.2.1.14.1;5.2.28.14.1 Variation 1: Addition of Organometallic Species to Allylstannyl Halides;270
1.8.1.2.1.14.2;5.2.28.14.2 Variation 2: Rearrangement of Allylstannanes;271
1.8.1.2.1.15;5.2.28.15 Method 15: Synthesis by the Hydrolysis of Borylallylic Stannanes;272
1.8.1.2.1.16;5.2.28.16 Method 16: Additional Methods;272
1.8.1.2.2;Applications of Product Subclass 28 in Organic Synthesis;274
1.8.1.2.2.1;5.2.28.17 Method 17: Radical Reactions;274
1.8.1.2.2.2;5.2.28.18 Method 18: Cross-Coupling Reactions;278
1.8.1.2.2.3;5.2.28.19 Method 19: Transmetalations;279
1.8.1.2.2.4;5.2.28.20 Method 20: Reactions with Aldehydes, Ketones, and Their Derivatives;281
1.8.1.2.2.5;5.2.28.21 Method 21: Catalytic Enantioselective Addition to Aldehydes;285
1.8.1.2.2.6;5.2.28.22 Method 22: Nucleophilic Addition to N-Acyliminium Ions;287
1.9;Volume 9: Fully Unsaturated Small Ring Heterocycles and Monocyclic Five-Membered Hetarenes with One Heteroatom;292
1.9.1;9.9 Product Class 9: Furans;292
1.9.1.1;9.9.5 Furans;292
1.9.1.1.1;9.9.5.1 Synthesis by Ring-Closure Reactions;294
1.9.1.1.1.1;9.9.5.1.1 By Formation of One O--C and One C--C Bond;294
1.9.1.1.1.1.1;9.9.5.1.1.1 Fragments O--C--C and C--C;294
1.9.1.1.1.1.1.1;9.9.5.1.1.1.1 From a-Heterofunctionalized Ketones or Aldehydes;294
1.9.1.1.1.1.1.1.1;9.9.5.1.1.1.1.1 Method 1: From a-Halo Ketones and 1,3-Dicarbonyl Compounds (Feist-Benary Reaction);294
1.9.1.1.1.1.1.1.2;9.9.5.1.1.1.1.2 Method 2: Rhodium-Catalyzed Reaction of a-Diazocarbonyl Compounds with Alkynes;295
1.9.1.1.1.1.1.1.3;9.9.5.1.1.1.1.3 Method 3: From a-Oxy Ketones or Aldehydes and Dicarbonyl Compounds;296
1.9.1.1.1.1.1.1.4;9.9.5.1.1.1.1.4 Method 4: From a-Oxyaldehydes and Enones;296
1.9.1.1.1.1.1.2;9.9.5.1.1.1.2 From 1,3-Dicarbonyl Compounds;297
1.9.1.1.1.1.1.2.1;9.9.5.1.1.1.2.1 Method 1: From 1,3-Dicarbonyl Compounds and Aldose Sugars;297
1.9.1.1.1.1.1.2.2;9.9.5.1.1.1.2.2 Method 2: From 1,3-Dicarbonyl Compounds and Propargyl Alcohols;299
1.9.1.1.1.1.1.2.3;9.9.5.1.1.1.2.3 Method 3: From 1,3-Dicarbonyl Compounds and But-2-ene-1,4-diones;300
1.9.1.1.1.1.1.2.4;9.9.5.1.1.1.2.4 Method 4: From 1,3-Dicarbonyl Compounds and 1,4-Diphenylbut-2-yne-1,4-dione;300
1.9.1.1.1.1.1.2.5;9.9.5.1.1.1.2.5 Method 5: From 1,3-Dicarbonyl Compounds and Bromoallenes;301
1.9.1.1.1.1.1.2.6;9.9.5.1.1.1.2.6 Method 6: From 1,3-Dicarbonyl Compounds and Nitroalkenes;301
1.9.1.1.1.1.1.2.7;9.9.5.1.1.1.2.7 Method 7: From 1,3-Dicarbonyl Compounds and Alkynoates;302
1.9.1.1.1.1.1.3;9.9.5.1.1.1.3 From Functionalized Alkenes and Alkynes with C--C--O Building Blocks;303
1.9.1.1.1.1.1.3.1;9.9.5.1.1.1.3.1 Method 1: From Diethyl Acetylenedicarboxylate and Propargyl Alcohols;303
1.9.1.1.1.1.1.3.2;9.9.5.1.1.1.3.2 Method 2: From Dimethyl Acetylenedicarboxylate, Aldehydes, and Thiazolium Salts;303
1.9.1.1.1.1.2;9.9.5.1.1.2 Fragments C--C--C and O--C;304
1.9.1.1.1.1.2.1;9.9.5.1.1.2.1 Method 1: Cyclization between 2,3-Bis(trimethylsilyl)buta-1,3-diene and Acyl Chlorides;304
1.9.1.1.1.1.2.2;9.9.5.1.1.2.2 Method 2: From Ketene S,S-Acetals and Aldehydes;305
1.9.1.1.1.1.2.3;9.9.5.1.1.2.3 Method 3: Reaction between Isocyanides, Dialkyl Acetylenedicarboxylates, and 1-Aryl-2-(arylamino)-2-hydroxyethanones;306
1.9.1.1.1.1.2.4;9.9.5.1.1.2.4 Method 4: Cyclization between Propargylic Dithioacetals and Aldehydes;307
1.9.1.1.1.1.3;9.9.5.1.1.3 Fragments O--C--C--C and C;308
1.9.1.1.1.1.3.1;9.9.5.1.1.3.1 Method 1: From Terminal Ynones and Aldehydes;308
1.9.1.1.1.1.3.2;9.9.5.1.1.3.2 Method 2: From Enones, Aldehydes, and Isocyanides;309
1.9.1.1.1.1.3.3;9.9.5.1.1.3.3 Method 3: From 1,3-Dicarbonyl Compounds and Cyclohexyl Isocyanide;310
1.9.1.1.1.1.3.4;9.9.5.1.1.3.4 Method 4: From a,ß-Unsaturated Carbonyl Compounds and Chromium Carbenes;310
1.9.1.1.1.1.3.5;9.9.5.1.1.3.5 Method 5: From Alkynyl Ketones and Diazoacetates;311
1.9.1.1.1.1.3.6;9.9.5.1.1.3.6 Method 6: Rhodium-Catalyzed Hydroformylation of Propargyl Alcohols;312
1.9.1.1.1.1.3.7;9.9.5.1.1.3.7 Method 7: From Dialkyl Acetylenedicarboxylates, Isocyanides, and Carbonyl Compounds;312
1.9.1.1.1.2;9.9.5.1.2 By Formation of Two C--C Bonds;314
1.9.1.1.1.2.1;9.9.5.1.2.1 Fragments C--O--C and C--C;314
1.9.1.1.1.2.1.1;9.9.5.1.2.1.1 Method 1: Condensation of Dimethyl Diglycolate with Aryl(oxo)acetates;314
1.9.1.1.1.2.1.2;9.9.5.1.2.1.2 Method 2: Reaction of Carbonyl Ylides and Alkynes;315
1.9.1.1.1.3;9.9.5.1.3 By Formation of One O--C Bond;315
1.9.1.1.1.3.1;9.9.5.1.3.1 Fragment O--C--C--C--C;315
1.9.1.1.1.3.1.1;9.9.5.1.3.1.1 By Cyclization of 1,4-Diheterofunctional C4 Compounds;315
1.9.1.1.1.3.1.1.1;9.9.5.1.3.1.1.1 Method 1: 1,4-Diazabicyclo[2.2.2]octane-Catalyzed Reaction of a-Halo Carbonyl Compounds with Dimethyl Acetylenedicarboxylate;316
1.9.1.1.1.3.1.1.2;9.9.5.1.3.1.1.2 Method 2: Reactions Involving N-Heterocyclic Carbenes, Activated Alkynes, and Aldehydes;316
1.9.1.1.1.3.1.1.3;9.9.5.1.3.1.1.3 Method 3: Cyclization of 1,4-Dicarbonyl Compounds;317
1.9.1.1.1.3.1.1.4;9.9.5.1.3.1.1.4 Method 4: Cyclization of .-Ketoamides;318
1.9.1.1.1.3.1.1.5;9.9.5.1.3.1.1.5 Method 5: Cyclization of 4-Hydroxybut-2-enals and 4-Hydroxybut-2-enones;319
1.9.1.1.1.3.1.1.6;9.9.5.1.3.1.1.6 Method 6: Cyclization of But-2-ene-1,4-diones;320
1.9.1.1.1.3.1.1.7;9.9.5.1.3.1.1.7 Method 7: Cyclization of Alk-2-yne-1,4-diols;321
1.9.1.1.1.3.1.1.8;9.9.5.1.3.1.1.8 Method 8: From Alkenyl Aryl Ketones and Dichloromethyl Phenyl Sulfoxide;322
1.9.1.1.1.3.1.1.9;9.9.5.1.3.1.1.9 Method 9: From Baylis–Hillman Adducts of Alkyl Vinyl Ketones;323
1.9.1.1.1.3.1.1.10;9.9.5.1.3.1.1.10 Method 10: From .,d-Epoxyacrylates;324
1.9.1.1.1.3.1.2;9.9.5.1.3.1.2 By Cyclization of Monofunctionalized C4 Compounds;325
1.9.1.1.1.3.1.2.1;9.9.5.1.3.1.2.1 Method 1: Cyclization of (Z)-2-En-4-yn-1-ols;325
1.9.1.1.1.3.1.2.2;9.9.5.1.3.1.2.2 Method 2: Cyclization of 2-En-4-yn-1-ones;326
1.9.1.1.1.3.1.2.3;9.9.5.1.3.1.2.3 Method 3: Cyclization of Pent-4-ynones;328
1.9.1.1.1.3.1.2.4;9.9.5.1.3.1.2.4 Method 4: Cyclization of But-3-yn-1-ols and 2-Alkynylcycloalk-2-enols;330
1.9.1.1.1.3.1.2.5;9.9.5.1.3.1.2.5 Method 5: Cyclization of But-3-yn-1-ones;331
1.9.1.1.1.3.1.2.6;9.9.5.1.3.1.2.6 Method 6: Cyclization of 2-(Alk-1-ynyl)alk-2-en-1-ones;332
1.9.1.1.1.3.1.2.7;9.9.5.1.3.1.2.7 Method 7: Cyclization of Allenols;334
1.9.1.1.1.3.1.2.8;9.9.5.1.3.1.2.8 Method 8: Cyclization of Allenones;336
1.9.1.1.1.3.1.2.9;9.9.5.1.3.1.2.9 Method 9: Cyclization of Alk-3-yne-1,2-diols;342
1.9.1.1.1.3.1.2.10;9.9.5.1.3.1.2.10 Method 10: Electrophilic Cyclization of Propargylic Oxirane Derivatives;344
1.9.1.1.1.3.1.2.11;9.9.5.1.3.1.2.11 Method 11: Cyclization of 1-Alkynyl-2,3-epoxy Alcohols;345
1.9.1.1.1.3.1.2.12;9.9.5.1.3.1.2.12 Method 12: Electrophilic Cyclization of 1-(Alk-1-ynyl)cyclopropyl Ketones;346
1.9.1.1.1.3.1.2.13;9.9.5.1.3.1.2.13 Method 13: Cyclization of Cyclopropylidene and Cyclopropenyl Ketones;347
1.9.1.1.1.3.1.2.14;9.9.5.1.3.1.2.14 Method 14: Wacker-Type Oxidative Cyclization of Alkenones;349
1.9.1.1.1.3.1.2.15;9.9.5.1.3.1.2.15 Method 15: Cyclization of 1,3-Dienyl Ethers or 1,3-Dien-1-ols;349
1.9.1.1.1.3.1.2.16;9.9.5.1.3.1.2.16 Method 16: Michael-Type Cyclization of 2,4-Unsaturated 1,6-Dicarbonyl Systems;351
1.9.1.1.1.3.1.2.17;9.9.5.1.3.1.2.17 Method 17: Methylsulfanylation of .-Disulfanyl Carbonyl Compounds;351
1.9.1.1.1.3.1.2.18;9.9.5.1.3.1.2.18 Method 18: Electrophilic Cyclization of 4-Sulfanylbut-2-yn-1-ols via [1,2]-Migration of the Sulfanyl Group;352
1.9.1.1.1.3.1.2.19;9.9.5.1.3.1.2.19 Method 19: Cycloisomerization of a-Sulfanyl Allenes;353
1.9.1.1.1.3.1.2.20;9.9.5.1.3.1.2.20 Method 20: Cyclization of Acetylene–Cobalt Complexes with (Vinyloxy)silanes;354
1.9.1.1.1.4;9.9.5.1.4 By Formation of One C--C Bond;354
1.9.1.1.1.4.1;9.9.5.1.4.1 Fragment C--O--C--C--C;354
1.9.1.1.1.4.1.1;9.9.5.1.4.1.1 Method 1: Cyclization of (2-Cyanovinyloxy)malonates;354
1.9.1.1.1.4.1.2;9.9.5.1.4.1.2 Method 2: Ring-Closing Metathesis of Homoallylic Enol Ethers;355
1.9.1.1.1.4.2;9.9.5.1.4.2 Fragment C--C--O--C--C;355
1.9.1.1.1.4.2.1;9.9.5.1.4.2.1 Method 1: Intramolecular Michael-Type Addition of a 3-Oxa-1,5-enyne;355
1.9.1.1.1.4.2.2;9.9.5.1.4.2.2 Method 2: Cyclization of 2'-Bromoallylic Propargyl Ethers;356
1.9.1.1.1.4.2.3;9.9.5.1.4.2.3 Method 3: Palladium-Catalyzed Cycloisomerization of Allyl Propargyl Ethers;356
1.9.1.1.1.4.2.4;9.9.5.1.4.2.4 Method 4: Reductive Cyclization of Propargyl 2,2,2-Trichloroethyl Ethers;357
1.9.1.1.1.4.2.5;9.9.5.1.4.2.5 Method 5: Radical Cyclization of Divinyl Ethers;357
1.9.1.1.1.4.2.6;9.9.5.1.4.2.6 Method 6: Ring-Closing Metathesis of Diallylic Ethers;358
1.9.1.1.2;9.9.5.2 Synthesis by Ring Transformation;359
1.9.1.1.2.1;9.9.5.2.1 Ring Enlargement;359
1.9.1.1.2.1.1;9.9.5.2.1.1 Method 1: Ring-Opening Cycloisomerization of Methylene- or Alkylidenecyclopropyl Ketones;360
1.9.1.1.2.2;9.9.5.2.2 From Five-Membered Heterocycles;361
1.9.1.1.2.2.1;9.9.5.2.2.1 Method 1: Ring Opening of 7-Oxabicycles;361
1.9.1.1.2.2.2;9.9.5.2.2.2 Method 2: Retro-Diels–Alder Reaction of 7-Oxabicyclo[2.2.1]heptadienes;361
1.9.1.1.2.2.3;9.9.5.2.2.3 Method 3: Intermolecular Cycloaddition of Alkynes to Oxazoles Followed by Retro-Diels–Alder Reaction;362
1.9.1.1.2.2.4;9.9.5.2.2.4 Method 4: Cycloaddition of 5-Aminopentynoates with Aldehydes and a-Isocyanoacetamides Followed by Retro-Diels–Alder Reaction;363
1.9.1.1.2.2.5;9.9.5.2.2.5 Method 5: Synthesis from (7-Oxabicyclo[2.2.1]hept-5-en-2-ylidene)-amines by Grob Fragmentation;364
1.9.1.1.2.3;9.9.5.2.3 Ring Contraction;365
1.9.1.1.2.3.1;9.9.5.2.3.1 Method 1: Synthesis from Furo[3,4-c]pyranones;365
1.9.1.1.2.3.2;9.9.5.2.3.2 Method 2: Synthesis from 3,6-Dihydro-1,2-dioxins;366
1.9.1.1.2.3.3;9.9.5.2.3.3 Method 3: Synthesis from Sugar Derivatives;366
1.9.1.1.3;9.9.5.3 Aromatization;367
1.9.1.1.3.1;9.9.5.3.1 Method 1: Synthesis by Elimination;367
1.9.1.1.3.2;9.9.5.3.2 Method 2: Oxidation of Dihydrofurans;369
1.9.1.1.4;9.9.5.4 Synthesis by Substituent Modification;369
1.9.1.1.4.1;9.9.5.4.1 Substitution of Hydrogen;369
1.9.1.1.4.1.1;9.9.5.4.1.1 Method 1: Introduction of Aminoalkyl Groups with N-Sulfinyl-4-toluene-sulfonamide and Zinc(II) Chloride;369
1.9.1.1.4.1.2;9.9.5.4.1.2 Method 2: Introduction of a Hydroxymethyl Group by Friedel–Crafts Reaction;370
1.9.1.1.4.1.3;9.9.5.4.1.3 Method 3: Introduction of Aryl, Alkynyl, Alkyl, or Hydroxymethyl Groups by Addition/Oxidative Rearrangement;371
1.9.1.1.4.1.4;9.9.5.4.1.4 Method 4: Introduction of Alk-1-enyl Groups by Coupling with Alkenes or Alkynes;373
1.9.1.1.4.1.5;9.9.5.4.1.5 Method 5: Introduction of Alkyl Groups by Reaction with Activated Alkenes;374
1.9.1.1.4.1.6;9.9.5.4.1.6 Method 6: Introduction of Aryl Groups by Coupling with Aryl Halides;376
1.9.1.1.4.1.7;9.9.5.4.1.7 Method 7: Introduction of Alkyl Groups by Lewis Acid or Metal-Catalyzed Reactions;377
1.9.1.1.4.1.8;9.9.5.4.1.8 Method 8: Introduction of exo-Methylene Groups by Catalytic Inter- or Intramolecular Hydroarylation of Unactivated Triple Bonds;378
1.9.1.1.4.1.9;9.9.5.4.1.9 Method 9: Introduction of Halogen Substituents;379
1.9.1.1.4.1.10;9.9.5.4.1.10 Method 10: Ammonium Cerium(IV) Nitrate Catalyzed Radical Dimerization;379
1.9.1.1.4.2;9.9.5.4.2 Substitution of Metals;379
1.9.1.1.4.2.1;9.9.5.4.2.1 Method 1: Replacement of Lithium by a Hydroxymethyl Group;379
1.9.1.1.4.2.2;9.9.5.4.2.2 Method 2: Replacement of Lithium by a Carbonyl Group;380
1.9.1.1.4.2.3;9.9.5.4.2.3 Method 3: Replacement of Lithium by Alkynyl Groups via Intermediate (Butyltellanyl)furans;381
1.9.1.1.4.2.4;9.9.5.4.2.4 Method 4: Replacement of Lithium by an Alkyl Group via Intermediate Stannanes (Stille Coupling);382
1.9.1.1.4.2.5;9.9.5.4.2.5 Method 5: Replacement of Lithium by an Aryl or Alkynyl Group via Intermediate Boronates (Suzuki Coupling);382
1.9.1.1.4.2.6;9.9.5.4.2.6 Method 6: Replacement of Lithium by Deuterium;384
1.9.1.1.4.2.7;9.9.5.4.2.7 Method 7: Replacement of Lithium or Magnesium by Carbonyl, Aryl, or Alkenyl Groups via Intermediate Furylzinc Compounds;384
1.9.1.1.4.2.8;9.9.5.4.2.8 Method 8: Replacement of Lithium by an Allyl Group;385
1.9.1.1.4.2.9;9.9.5.4.2.9 Method 9: Replacement of Lithium by a Silyl Group;385
1.9.1.1.4.2.10;9.9.5.4.2.10 Method 10: Replacement of Lithium by a Carbonyl Group via a Furyltitanium;386
1.9.1.1.4.3;9.9.5.4.3 Substitution of Carbon Functionalities;386
1.9.1.1.4.3.1;9.9.5.4.3.1 Method 1: Curtius Rearrangement of Furan-2-carboxylic Acids;387
1.9.1.1.4.4;9.9.5.4.4 Substitution of Heteroatoms;388
1.9.1.1.4.4.1;9.9.5.4.4.1 Method 1: Reaction of Halofurans with Heteroatom Nucleophiles;388
1.9.1.1.4.4.2;9.9.5.4.4.2 Method 2: Reaction of Halofurans with Carbonyl Electrophiles;388
1.9.1.1.4.4.3;9.9.5.4.4.3 Method 3: Reactions of Halofurans with Alkenes;389
1.9.1.1.4.4.4;9.9.5.4.4.4 Method 4: Nucleophilic Aromatic Substitution of Activated 2-Methoxyfurans with Grignard Reagents;389
1.9.1.1.4.5;9.9.5.4.5 Modification of a-Substituents;390
1.9.1.1.4.5.1;9.9.5.4.5.1 Method 1: Multicomponent Type II Anion Relay Chemistry of 2-(tert-Butyldimethylsilyl)furan-3-carbaldehyde;390
1.9.1.1.4.5.2;9.9.5.4.5.2 Method 2: Wittig Rearrangement of 3-Furylmethyl Ethers;390
1.9.1.1.4.5.3;9.9.5.4.5.3 Method 3: Ene Reaction of 2-Methylene-2,3-dihydrofurans;391
1.9.1.1.4.5.4;9.9.5.4.5.4 Method 4: Pummerer-Type Reaction of (Phenylsulfinyl)furans;392
1.9.1.1.4.5.5;9.9.5.4.5.5 Method 5: 1,5-Electrocyclization of Carbene-Derived Ylides from N-(2-Furylmethylene)anilines;393
1.9.2;9.10 Product Class 10: Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides;402
1.9.2.1;9.10.4 Thiophenes, Thiophene 1,1-Dioxides, and Thiophene 1-Oxides;402
1.9.2.1.1;9.10.4.1 Thiophenes;402
1.9.2.1.1.1;9.10.4.1.1 Synthesis by Ring-Closure Reactions;402
1.9.2.1.1.1.1;9.10.4.1.1.1 By Formation of Two S--C Bonds and One C--C Bond;402
1.9.2.1.1.1.1.1;9.10.4.1.1.1.1 Fragment S and Two C--C Fragments;402
1.9.2.1.1.1.1.1.1;9.10.4.1.1.1.1.1 Method 1: Synthesis from a Diphosphorylacetylene and Sodium Hydrosulfide Hydrate;402
1.9.2.1.1.1.2;9.10.4.1.1.2 By Formation of Two S--C Bonds;403
1.9.2.1.1.1.2.1;9.10.4.1.1.2.1 Fragments C--C--C--C and S;403
1.9.2.1.1.1.2.1.1;9.10.4.1.1.2.1.1 Method 1: Reaction of a,ß-Unsaturated Nitriles with Sulfur (The Gewald Synthesis);403
1.9.2.1.1.1.3;9.10.4.1.1.3 By Formation of Two C--C Bonds;404
1.9.2.1.1.1.3.1;9.10.4.1.1.3.1 Fragments C--S--C and C--C;404
1.9.2.1.1.1.3.1.1;9.10.4.1.1.3.1.1 Method 1: Reaction of 3-Thia-1,5-dicarbonyl Compounds or Equivalents with 1,2-Dicarbonyl Compounds (The Hinsberg Synthesis);404
1.9.2.1.1.2;9.10.4.1.2 Synthesis by Substituent Modification;406
1.9.2.1.1.2.1;9.10.4.1.2.1 Substitution of Hydrogen;406
1.9.2.1.1.2.1.1;9.10.4.1.2.1.1 Method 1: Hydrogen–Deuterium Exchange;406
1.9.2.1.1.2.1.2;9.10.4.1.2.1.2 Method 2: Introduction of Formyl Groups;406
1.9.2.1.1.2.1.2.1;9.10.4.1.2.1.2.1 Variation 1: Formylation with Hexamethylenetetramine in Polyphosphoric Acid;406
1.9.2.1.1.2.1.2.2;9.10.4.1.2.1.2.2 Variation 2: Metalation of Thiophenes Followed by Formylation with N-Formylpiperidine;407
1.9.2.1.1.2.1.3;9.10.4.1.2.1.3 Method 3: Introduction of Acyl Groups;408
1.9.2.1.1.2.1.3.1;9.10.4.1.2.1.3.1 Variation 1: Acylation of Thiophene with Anhydrides;408
1.9.2.1.1.2.1.3.2;9.10.4.1.2.1.3.2 Variation 2: Acylation of Thiophene with Acyl Chlorides;409
1.9.2.1.1.2.1.3.3;9.10.4.1.2.1.3.3 Variation 3: Acylation of Thiophene with an Ester;410
1.9.2.1.1.2.1.3.4;9.10.4.1.2.1.3.4 Variation 4: Acylation of Thiophene with Carboxylic Acids;410
1.9.2.1.1.2.1.4;9.10.4.1.2.1.4 Method 4: Introduction of Chloromethyl Groups;411
1.9.2.1.1.2.1.5;9.10.4.1.2.1.5 Method 5: Introduction of Alkylamino Groups;412
1.9.2.1.1.2.1.6;9.10.4.1.2.1.6 Method 6: Introduction of Allyl, Alk-1-enyl, or Alk-1-ynyl Groups;413
1.9.2.1.1.2.1.7;9.10.4.1.2.1.7 Method 7: Introduction of Aryl Groups;414
1.9.2.1.1.2.1.7.1;9.10.4.1.2.1.7.1 Variation 1: One-Pot C--H Borylation/Suzuki–Miyaura Cross Coupling;414
1.9.2.1.1.2.1.7.2;9.10.4.1.2.1.7.2 Variation 2: Palladium-Catalyzed Direct Arylation;416
1.9.2.1.1.2.1.8;9.10.4.1.2.1.8 Method 8: Introduction of Alkyl Groups;417
1.9.2.1.1.2.1.8.1;9.10.4.1.2.1.8.1 Variation 1: Gold(III)-Catalyzed Intermolecular Hydroarylation;417
1.9.2.1.1.2.1.8.2;9.10.4.1.2.1.8.2 Variation 2: Dichlorobis(.5-cyclopentadienyl)zirconium(IV)-Catalyzed Alkylation;417
1.9.2.1.1.2.1.8.3;9.10.4.1.2.1.8.3 Variation 3: Friedel–Crafts Alkylation of Thiophenes;418
1.9.2.1.1.2.1.9;9.10.4.1.2.1.9 Method 9: Halogenation;419
1.9.2.1.1.2.1.10;9.10.4.1.2.1.10 Method 10: Nitration;420
1.9.2.1.1.2.2;9.10.4.1.2.2 Substitution of Metals;421
1.9.2.1.1.2.2.1;9.10.4.1.2.2.1 Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction);421
1.9.2.1.1.2.2.2;9.10.4.1.2.2.2 Method 2: Substitution Reactions Involving Organozinc Derivatives (The Negishi Reaction);422
1.9.2.1.1.2.2.3;9.10.4.1.2.2.3 Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction);423
1.9.2.1.1.2.2.4;9.10.4.1.2.2.4 Method 4: Substitution Reactions Involving Organomagnesium Derivatives (The Kumada Reaction);425
1.9.2.1.1.2.3;9.10.4.1.2.3 Substitution of Heteroatoms;426
1.9.2.1.1.2.3.1;9.10.4.1.2.3.1 Method 1: Substitution of Halogens by Hydrogen;426
1.9.2.1.1.2.3.2;9.10.4.1.2.3.2 Method 2: Substitution of Halogens by Alkoxy Groups;427
1.9.2.1.1.2.3.3;9.10.4.1.2.3.3 Method 3: Metal-Assisted Cross Coupling of Halothiophenes with Alkenes;427
1.9.2.1.1.2.3.3.1;9.10.4.1.2.3.3.1 Variation 1: Cross Coupling of Halothiophenes with Alkenes in the Presence of a Palladium/Tetraphosphine Catalyst;427
1.9.2.1.1.2.3.3.2;9.10.4.1.2.3.3.2 Variation 2: Cross Coupling of Halothiophenes with Alkenes in the Presence of Palladium-Containing Nanostructured Silica Functionalized with Pyridine Sites;428
1.9.2.1.1.2.3.3.3;9.10.4.1.2.3.3.3 Variation 3: Palladium-Catalyzed Heck Reactions of Halothiophenes with Electron-Rich Alkenes in an Ionic Liquid;429
1.9.2.1.1.2.3.4;9.10.4.1.2.3.4 Method 4: Metal-Assisted Cross Coupling of Halothiophenes with Arenes;430
1.9.2.1.1.2.3.4.1;9.10.4.1.2.3.4.1 Variation 1: Suzuki Cross Coupling of Halothiophenes with Arenes in the Presence of a Palladium/Tetraphosphine Catalyst;430
1.9.2.1.1.2.3.4.2;9.10.4.1.2.3.4.2 Variation 2: Suzuki Cross Coupling of Halothiophenes with Arenes in the Presence of a Biarylmonophosphine Ligand;431
1.9.2.1.1.2.3.4.3;9.10.4.1.2.3.4.3 Variation 3: Site-Selective Suzuki–Miyaura Reactions of 2,3,5-Tribromothiophene;432
1.9.2.1.1.2.3.4.4;9.10.4.1.2.3.4.4 Variation 4: Suzuki-Type Cross Coupling of Halothiophenes with Arenes in the Presence of Boronates;434
1.9.2.1.1.2.3.4.5;9.10.4.1.2.3.4.5 Variation 5: Stille Cross Coupling of Halothiophenes with Organostannanes in the Presence of a ß-Oxoiminate(phosphine)palladium Catalyst;435
1.9.2.1.1.2.3.5;9.10.4.1.2.3.5 Method 5: Metal-Assisted Cross Coupling of Halothiophenes with Alkynes;436
1.9.2.1.1.2.3.6;9.10.4.1.2.3.6 Method 6: Palladium-Catalyzed Cyanation Reactions of Halothiophenes;437
1.9.2.1.1.2.3.7;9.10.4.1.2.3.7 Method 7: Copper-Catalyzed Amination of Halothiophenes;439
1.9.2.1.1.2.3.8;9.10.4.1.2.3.8 Method 8: Substitution of Diaryliodonium Bromides;440
1.9.2.1.1.2.4;9.10.4.1.2.4 Modification of a-Substituents;440
1.9.2.1.1.2.4.1;9.10.4.1.2.4.1 Method 1: Mitsunobu Reaction of Thiophenones;440
1.9.2.1.1.2.4.2;9.10.4.1.2.4.2 Method 2: Decarboxylation;442
1.9.2.1.2;9.10.4.2 Oligothiophenes;443
1.9.2.1.2.1;9.10.4.2.1 Synthesis by Ring-Closure Reactions;443
1.9.2.1.2.1.1;9.10.4.2.1.1 By Formation of Two S--C Bonds;443
1.9.2.1.2.1.1.1;9.10.4.2.1.1.1 Fragments C--C--C--C and S;443
1.9.2.1.2.1.1.1.1;9.10.4.2.1.1.1.1 Method 1: Reaction of Buta-1,3-diynes with Sulfides as Sulfuration Reagents;443
1.9.2.1.2.1.1.1.2;9.10.4.2.1.1.1.2 Method 2: Reaction of 1,4-Diketones with Sulfur Reagents and Cyclization;444
1.9.2.1.2.2;9.10.4.2.2 Synthesis by Ring Transformation;445
1.9.2.1.2.2.1;9.10.4.2.2.1 Ring Contraction;445
1.9.2.1.2.2.1.1;9.10.4.2.2.1.1 Method 1: Synthesis from 1,2-Dithiins by Oxidative Coupling/Dechalcogenation with Copper Nanopowder;445
1.9.2.1.2.3;9.10.4.2.3 Synthesis by Substituent Modification;447
1.9.2.1.2.3.1;9.10.4.2.3.1 Substitution of Hydrogen;447
1.9.2.1.2.3.1.1;9.10.4.2.3.1.1 Method 1: Oxidative Coupling Reactions;447
1.9.2.1.2.3.1.2;9.10.4.2.3.1.2 Method 2: Direct Arylation Methods Involving Metal Catalysis;451
1.9.2.1.2.3.1.2.1;9.10.4.2.3.1.2.1 Variation 1: Aryl--Aryl Bond Formation via Coupling of Two C--H Bonds;451
1.9.2.1.2.3.2;9.10.4.2.3.2 Substitution of Metals;451
1.9.2.1.2.3.2.1;9.10.4.2.3.2.1 Method 1: Substitution Reactions Involving Organostannanes (The Stille Reaction);451
1.9.2.1.2.3.2.1.1;9.10.4.2.3.2.1.1 Variation 1: Palladium-Catalyzed Stille Cross-Coupling Reactions;451
1.9.2.1.2.3.2.1.2;9.10.4.2.3.2.1.2 Variation 2: Palladium-Catalyzed, Copper(II) Oxide Modified Stille Cross-Coupling Reactions;454
1.9.2.1.2.3.2.1.3;9.10.4.2.3.2.1.3 Variation 3: Palladium-Catalyzed, Solid-Phase Stille Cross-Coupling Reactions;455
1.9.2.1.2.3.2.2;9.10.4.2.3.2.2 Method 2: Substitution Reactions Involving Organozinc Derivatives;456
1.9.2.1.2.3.2.3;9.10.4.2.3.2.3 Method 3: Substitution Reactions Involving Organoboron Derivatives (The Suzuki Reaction);458
1.9.2.1.2.3.2.3.1;9.10.4.2.3.2.3.1 Variation 1: Tetrakis(triphenylphosphine)palladium(0)-Assisted Suzuki Cross Coupling under Basic Conditions;458
1.9.2.1.2.3.2.3.2;9.10.4.2.3.2.3.2 Variation 2: Microwave-Assisted Palladium Catalysis Using Silica- and Chitosan-Supported Palladium Complexes;460
1.9.2.1.2.3.2.3.3;9.10.4.2.3.2.3.3 Variation 3: A “Base-Free” Tetrakis(triphenylphosphine)palladium(0)-Assisted Suzuki Cross-Coupling Protocol Involving a Triethylborate Salt;461
1.9.2.1.2.3.2.4;9.10.4.2.3.2.4 Method 4: Substitution Reactions Involving Organomagnesium Derivatives;463
1.9.2.1.2.3.3;9.10.4.2.3.3 Substitution of Heteroatoms;464
1.9.2.1.2.3.3.1;9.10.4.2.3.3.1 Method 1: Introduction of Aryl Groups;464
1.9.2.1.2.3.3.2;9.10.4.2.3.3.2 Method 2: Palladium-Assisted Coupling Reactions;465
1.9.2.1.3;9.10.4.3 Thiophene 1,1-Dioxides;466
1.9.2.1.3.1;9.10.4.3.1 Synthesis by Ring Transformation;466
1.9.2.1.3.1.1;9.10.4.3.1.1 Oxidation;466
1.9.2.1.3.1.1.1;9.10.4.3.1.1.1 Method 1: Oxidation of Thiophenes;466
1.9.2.1.3.2;9.10.4.3.2 Aromatization;468
1.9.2.1.3.2.1;9.10.4.3.2.1 Method 1: Synthesis from 3-Hydroxy-2,3-dihydrothieno[3,2-b]thiophene-1,1-Dioxides by Dehydration;468
1.10;Volume 20: Three Carbon--Heteroatom Bonds: Acid Halides; Carboxylic Acids and Acid Salts; Esters and Lactones; Peroxy Acids and R(CO)OX Compounds; R(CO)X, X = S, Se, Te;476
1.10.1;20.5 Product Class 5: Carboxylic Acid Esters;476
1.10.1.1;20.5.1.7.15 Synthesis with Retention of the Functional Group;476
1.10.1.1.1;20.5.1.7.15.1 Conjugate Addition to a,ß-Unsaturated Esters;476
1.10.1.1.1.1;20.5.1.7.15.1.1 Method 1: Conjugate Addition of Organometallic Reagents;476
1.10.1.1.1.1.1;20.5.1.7.15.1.1.1 Variation 1: Conjugate Addition of Organocopper Reagents;476
1.10.1.1.1.1.2;20.5.1.7.15.1.1.2 Variation 2: Conjugate Addition of Grignard Reagents;478
1.10.1.1.1.1.3;20.5.1.7.15.1.1.3 Variation 3: Conjugate Addition of Organolithium Reagents;481
1.10.1.1.1.2;20.5.1.7.15.1.2 Method 2: Conjugate Addition of Other Carbon Nucleophiles;483
1.10.1.1.1.2.1;20.5.1.7.15.1.2.1 Variation 1: Conjugate Addition of Enolates;483
1.10.1.1.1.2.2;20.5.1.7.15.1.2.2 Variation 2: Conjugate Addition of Malonates and Derivatives;484
1.10.1.1.1.2.3;20.5.1.7.15.1.2.3 Variation 3: Conjugate Addition of Terminal Alkynes;485
1.10.1.1.1.3;20.5.1.7.15.1.3 Method 3: Conjugate Addition of Organosilane Reagents;485
1.10.1.1.1.4;20.5.1.7.15.1.4 Method 4: Conjugate Addition of Organoborane Reagents;486
1.10.1.1.1.5;20.5.1.7.15.1.5 Method 5: Conjugate Addition of Boronate Derivatives;490
1.10.1.1.1.6;20.5.1.7.15.1.6 Method 6: Conjugate Addition of Amines;491
1.10.1.1.1.7;20.5.1.7.15.1.7 Method 7: Conjugate Addition of O- and S-Nucleophiles;494
1.11;Volume 39: Sulfur, Selenium, and Tellurium;500
1.11.1;39.1 Product Class 1: Alkanesulfonic Acids and Acyclic Derivatives;500
1.11.1.1;39.1.15 Alkanesulfonic Acids and Acyclic Derivatives;500
1.11.1.1.1;39.1.15.1 Applications of Alkanesulfonyl Halides in Organic Synthesis;500
1.11.1.1.1.1;39.1.15.1.1 Method 1: Protection of Alcohols;500
1.11.1.1.1.2;39.1.15.1.2 Method 2: Protection of Amines;501
1.11.1.1.1.3;39.1.15.1.3 Method 3: Synthesis of Alkanethiols;501
1.11.1.1.1.4;39.1.15.1.4 Method 4: Synthesis of Dialkyl Disulfides;501
1.11.1.1.1.5;39.1.15.1.5 Method 5: Synthesis of Sulfinic Acids and Salts;502
1.11.1.1.1.6;39.1.15.1.6 Method 6: Synthesis of Alkanesulfinate Esters;502
1.11.1.1.1.7;39.1.15.1.7 Method 7: Synthesis of Alkanethiosulfonic Acids and Alkanethiosulfinate Esters;502
1.11.1.1.1.8;39.1.15.1.8 Method 8: Synthesis of Sulfones;502
1.11.1.1.1.8.1;39.1.15.1.8.1 Variation 1: Reactions of Alkanesulfonyl Chlorides with Organometallic Compounds;502
1.11.1.1.1.8.2;39.1.15.1.8.2 Variation 2: Synthesis of Alkyl Aryl Sulfones;504
1.11.1.1.1.8.3;39.1.15.1.8.3 Variation 3: Addition of Sulfonyl Halides to Multiple Bonds;505
1.11.1.1.1.8.4;39.1.15.1.8.4 Variation 4: Synthesis of ß-Substituted Sulfones;506
1.11.1.1.1.9;39.1.15.1.9 Method 9: Synthesis of Sulfur Heterocycles;511
1.11.1.1.1.10;39.1.15.1.10 Method 10: Formation of C--C Bonds Using Alkanesulfonyl Halides;517
1.11.1.1.1.11;39.1.15.1.11 Method 11: Formation of C==C Bonds Using Alkanesulfonyl Halides;521
1.11.1.1.1.12;39.1.15.1.12 Method 12: Transformation of Alcohols into Alkyl Chlorides and Chlorination Reactions;524
1.11.1.1.1.13;39.1.15.1.13 Method 13: Cyclization Reactions via Acyliminium Ion Formation;526
1.11.1.1.1.14;39.1.15.1.14 Method 14: Pyrrolidine Ring Formation;527
1.11.1.1.1.15;39.1.15.1.15 Method 15: Epoxide Ring Formation;527
1.11.1.1.1.16;39.1.15.1.16 Method 16: Lactone Inversion;528
1.11.1.1.1.17;39.1.15.1.17 Method 17: Formation of Aldehydes via Rearrangement of Thioacetals;528
1.12;Author Index;532
1.13;Abbreviations;556
1.14;List of All Volumes;562
3.6.11 Organometallic Complexes of Gold (Update 1, 2011)
V. López-Carrillo and A. M. Echavarren 3.6.11.1 Gold-Catalyzed Cycloisomerizations of Enynes
Gold(I) salts and complexes are the most alkynophilic amongst the electrophilic metals that catalyze cyclization of 1,n-enynes.[1–13] Gold(I) complexes are highly selective Lewis acids with a high affinity for p-bonds linked to relativistic effects, which reach a maximum with gold.[6,14–16] In the reactions of 1,6-enynes 1, the alkyne group is selectively activated by a cationic gold species {[AuL]+} to form an alkyne–gold(I) complex, which reacts intramolecularly with the alkene by formal 5-exo-dig or 6-endo-dig cyclization to form intermediates 2 and 3, respectively (? Scheme 1).[1] A number of alkyne–gold complexes have been characterized[17–21] and studied in solution.[22–25] ? Scheme 1 General Reaction Pathways in the Gold(I)-Catalyzed Cyclization of 1,6-Enynes Although the vast majority of cyclizations of 1,n-enynes catalyzed by gold(I) can be explained by the selective activation of the alkyne function by gold, complexes of gold(I) with the alkene function of the enyne are actually formed in solution in equilibrium with the alkyne–gold complexes.[26] Indeed, well-characterized complexes of gold(I) with alkenes are known[27–42] and their structures have been studied in solution.[39,40,43,44] The solid-state structure of a cationic allene–gold(I) complex has also been determined.[45] Formation of C—C bonds can be catalyzed by gold(I) or gold(III) salts or complexes. However, gold(III) may be reduced to gold(I) by easily oxidizable substrates.[46] The most widely used catalysts are cationic complexes [Au(S)(L)]X (L = ligand; S = solvent or substrate molecule) generated in situ by chloride abstraction from complexes [AuCl(L)]. Thus, the precatalyst chloro(triphenylphosphine)gold(I) (or other similar phosphine complex) reacts with 1 equivalent of a silver salt with a noncoordinating anion to generate in situ the cationic catalyst {[Au(PPh3)(S)]X}.[47,48] Similar cationic complexes can be obtained in situ by cleavage of the Au—Me bond in methyl(triphenylphosphine)gold(I) with a protic acid.[47,49–51] More conveniently, a cationic complex {[Au(NCMe)(PPh3)]SbF6} has been prepared as a stable crystalline solid, which allows gold(I)-catalyzed reactions to be performed in the absence of silver salts.[47] A gold–oxo complex {[(Ph3PAu)3O]BF4}[52,53] has also been used as a catalyst in reactions of enynes.[54] Gold(I) complexes 4–7 bearing bulky, biphenyl-based phosphines, which have been shown to be excellent ligands for palladium-catalyzed reactions,[55,56] lead to active catalysts upon activation with silver(I) salts (? Scheme 2).[57] More convenient as catalysts are cationic complexes 8–11, which are stable crystalline solids that can be handled under ordinary conditions,[58,59] yet are very reactive as catalysts in a variety of transformations.[60–63] Related complexes 12 and 13 with a weakly coordinated bis(trifluoromethylsulfonyl)amide ligand have also been prepared.[64] Gold complexes with highly electrondonating N-heterocyclic carbene ligands[65–67] such as 14–17 are also good precatalysts.[57,68–72] Cationic species 18 and 19,[73] and related complexes,[74,75] as was well as neutral species 20 and 21[76,77] bearing the 1,3-dimesitylimidazol-2-ylidene (IMes) and 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene (IPr) N-heterocyclic carbene ligands are active catalysts in many applications. A hydroxygold(I) complex [Au(OH)(IPr)] can also be used as a precatalyst that can be activated with Brønsted acids.[78,79] Open carbenes[80–84] and other related carbenes[20,85–88] also give rise to selective catalysts of moderate electro-philicity. Gold(I) complexes with less donating phosphite or phosphoramidite ligands are the most electrophilic catalysts.[89,90] In particular, readily available complex 22/silver(I) hexafluoroantimonate[91] and its cationic relative 23, bearing tris(2,4-di-tert-butylphenyl)phosphite, are amongst the most reactive gold(I) complexes for the activation of alkynes.[68] ? Scheme 2 Selected Gold(I) Complexes Used as Catalysts or Precatalysts 3.6.11.1.1 Method 1: Cycloisomerization of 1,6-Enynes
3.6.11.1.1.1 Variation 1: Formation of 1,3-Dienes In contrast to palladium(II), platinum(II),[92–95] and ruthenium(II),[94] gold(I) does not undergo oxidative addition under mild conditions.[6,47,96–98] In the absence of nucleophiles, 1,6-enynes usually undergo various types of skeletal rearrangement reactions by fully intra-molecular processes using a variety of electrophilic metal catalysts.[2–4] The major pathways lead to 1,3-dienes 24 and/or 25, reactions known as single-cleavage and double-cleavage rearrangements (? Scheme 3).[92,93,99–120] These rearrangement reactions proceed under milder conditions using gold(I) catalysts.[47,48,96] For gold(I), the rearrangement is proposed to proceed via intermediates 2 (see ? Scheme 1, Section 3.6.11.1),[97,121] by a mechanism that is consistent with previous work.[99,100,105,114,122–124] Products 26 of a different type of skeletal rearrangement were originally obtained using gold(I) catalysts,[120,125] although this type of compound has since also been obtained using indium(III) chloride[109,110] or iron(III)[96] or ruthenium(II) catalysts.[126] Similar products have also been observed in the reaction of Z-4,6-dien-1-yl-3-ol derivatives with gold or platinum catalysts.[127,128] ? Scheme 3 Gold(I)-Catalyzed Skeletal Rearrangement of 1,6-Enynes None of the key intermediates involved in the skeletal rearrangement has been spectroscopically characterized,[129] although a gold carbene with an N-heterocyclic carbene ligand has been formed in the gas phase and its reactivity with alkenes has been studied.[130–133] Therefore, the structures of these species are based on density functional theory (DFT) calculations. Some of these intermediates are depicted for convenience as gold carbenes, since backbonding in gold(I) has been shown to be not insignificant.[5,6,134,135] However, according to theoretical calculations, these are highly delocalized structures.[97,121,136,137] In the case of cyclopropyl-containing gold carbenes 2 (see ? Scheme 1, Section 3.6.11.1), these can also be viewed as delocalized cyclopropylmethyl/cyclobutyl/homoallyl carbocations[138] stabilized by gold.[97,121] Single-cleavage rearrangement reactions of enynes 27 are stereospecific transformations that proceed under mild conditions to give cyclized products 28 (? Scheme 4).[96] Using cationic catalysts 8 or 9 containing bulky phosphine ligands, the rearrangements take place smoothly at temperatures as low as –40 to –60 °C.[121] Similar transformations have been carried out with other gold(I) catalysts.[64,77,139] However, as an exception, enynes such as 29 and 31 with strongly electron-donating groups at the alkene terminus lead to dienes 30 and 32, respectively, with a Z configuration, regardless of the configuration of the starting enynes (? Scheme 5).[140] ? Scheme 4...