Buch, Englisch, Band 1370, 462 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1450 g
Reihe: Lecture Notes in Mathematics
Proceedings of an International Conference held in Arcata, California, July 27 - August 2, 1986
Buch, Englisch, Band 1370, 462 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 1450 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-540-51118-2
Verlag: Springer Berlin Heidelberg
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
Weitere Infos & Material
Topology: past, present and future.- The work of Edgar H. Brown, Jr. in Topology.- Homology representations of finite transformation groups.- Homotopy exponents for spaces of category two.- On the complex bordism of classifying spaces.- On equivariant maps and immersions of real projective spaces.- Cogroups which are not suspensions.- Instantons and homotopy.- On real homotopy theory.- Some remarks on the space Im J.- A new spectrum related to 7-connected cobordism.- Aspherical manifolds without smooth or PL structure.- Homology with simplicial coefficients.- On the double suspension.- A whitehead product for track groups.- Minimal atlases of real projective spaces.- Higher homotopy associativity.- Homotopy approximations for classifying spaces of compact lie groups.- Cyclic homology and characteristic classes of bundles with additional structures.- Morava K-theories and infinite loop spaces.- Lie groups from a homotopy point of view.- Order of the identity map of the Brown-Gitler spectrum.- Topology of the intersection of quadrics in ?2.- Orientations for Poincaré duality spaces and applications.- A double coset formula for levi subgroups and splitting BGL n.- Browder-Fröhlich symbols.- K-theory homology of spaces.- Stirling and Bernoulli numbers for complex oriented homology theory.- Composition products in RHom, and ring spectra of derived endomorphisms.- Convexity and root closure in negatively curved manifolds.- Cohomology of finite groups and brown-peterson cohomology.- The artin-hasse logarithm for ?-rings.- Higher cohomology operations that detect homotopy classes.- Problem session for homotopy theory.- H-spaces.- K and L-theory.- Manifolds & bordism.- Transformation groups.