Carlson | Monolithic Diode-Laser Arrays | E-Book | sack.de
E-Book

E-Book, Englisch, Band 33, 396 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

Carlson Monolithic Diode-Laser Arrays


1994
ISBN: 978-3-642-78942-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 33, 396 Seiten, eBook

Reihe: Springer Series in Electronics and Photonics

ISBN: 978-3-642-78942-7
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Although semiconductor-diode lasers are the most compact, highest gain and most efficient laser sources, difficulties remain in developing structures that will produce high-quality, diffraction-limited output beams. Indeed, only a few designs have emerged with the potential for producing high-power, high-brightness monolithic sources. This book presents and analyzes the results of work performed over the past two decades in the development of such diode-laser arrays.

Carlson Monolithic Diode-Laser Arrays jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


1. Introduction and Background.- 1.1 History of Diode-Laser Array Development.- 1.2 Nonsemiconductor Laser Arrays.- 1.3 Contributing Factors to Developing Monolithic Diode-Laser Arrays.- 1.3.1 Key Technological Advances.- 1.3.2 Performance Limitations of Single-Element Diode Lasers.- 1.3.3 Distinction Between Coherent and Incoherent Diode-Laser Arrays.- 1.3.4 Applications for Diode-Laser Arrays.- 1.4 Design Concepts for Coherent Diode-Laser Arrays.- 1.4.1 Laterally Coupled Diode-Laser Array Concepts.- 1.4.2 Longitudinally Coupled Diode-Laser Array Concepts.- 1.4.3 Output Coupling Mechanisms.- 2. Fundamentals of High-Power Operation.- 2.1 Threshold Characteristics.- 2.2 Current-Gain Properties.- 2.3 Optimizing Operation Above-Threshold.- 2.3.1 Differential Quantum Efficiency.- 2.3.2 Conversion Efficiency.- 2.3.3 Maximizing Conversion Efficiency.- 2.3.4 Nonlinear Gain Saturation and Conversion Efficiency.- 2.3.5 Maximizing Power-Extraction Efficiency.- 2.3.6 Efficiency and Power-Current Characteristics: Nonlinear Calculation.- 2.4 Scaling Properties of Semiconductor and Non-Semiconductor Lasers.- 2.5 Scaling Limitations on Power Performance of Diode Lasers.- 2.6 Effect of Carriers on Optical Properties.- 2.7 Linewidth Broadening Factor.- 2.8 Thermal Effects in High-Power Arrays.- 2.8.1 Effect of Heating on Diode-Laser Characteristics.- 2.8.2 Heat Dissipation in Diode-Laser Arrays.- 2.8.3 Thermal Management and Performance Limitations.- 3. Spatial and Spectral Mode Discrimination.- 3.1 Spatial Modes of Planar Semiconductor Waveguides.- 3.1.1 Index Guiding.- 3.1.2 Gain Guiding.- 3.1.3 Mixed Guiding.- 3.1.4 Parabolic Dielectic-Profile Waveguide Model.- 3.2 Lateral-Mode Discrimination and Modal Gain.- 3.3 Single-Frequency Operation.- 3.3.1 Number of Modes in Diode-Laser Arrays.- 3.3.2 Spontaneous-Emission Factor.- 3.3.3 Longitudinal Mode Structure.- 3.3.4 Spectral Linewidth.- 3.4 Frequency-Locking of Diode-Laser Oscillators.- 3.4.1 Frequency Locking of Independent Laser Oscillators.- 3.4.2 Influence of Nonuniformities on Frequency Locking.- 4. Theoretical Models for Monolithic Diode-Laser Arrays.- 4.1 Multi-Layer Waveguide Structures.- 4.2 Analysis of Diode-Laser Waveguide Structures.- 4.2.1 Effective-Index Method.- 4.2.2 Coupled-Mode Approximation.- 4.2.3 Bloch-Function Analysis of Laser Arrays.- 4.2.4 Two-Dimensional Waveguide Model of Laser Arrays.- 4.3 Self-Consistent Models.- 4.3.1 Electric-Field Propagation Model.- 4.3.2 Carrier-Transport Model.- 4.3.3 Thermal Model.- 4.3.4 Outline of Self-Consistent Numerical Procedure.- 4.3.5 Instability of Spatial Modes.- 4.4 Optical Coherence Theory.- 4.4.1 Mutual Coherence.- 4.4.2 Cross-Power Spectrum.- 4.4.3 Propagation of the Cross-Power Spectrum.- 4.4.4 Far-Field Mutual Coherence.- 4.4.5 Cross-Spectral Purity.- 5. Gain-Guided Diode-Laser Oscillators.- 5.1 Multiple-Stripe Gain-Guided Laser Array Structures.- 5.2 Gain-Tailored Structures.- 5.3 Unstable-Resonator Diode Lasers.- 5.3.1 Geometric Optics Analysis of Unstable Resonators.- 5.3.2 Unstable-Resonator Diode Lasers with Self-Collimated Output Beams.- 5.3.3 Half-Symmetric Unstable-Resonator Diode Lasers.- 5.3.4 Tapered-Cavity Diode Lasers.- 6. Index-Guided Diode-Laser Array Oscillators.- 6.1 Channeled-Substrate Planar Laser Arrays.- 6.2 Ridge-Guided Laser Arrays.- 6.3 Leaky-Wave-Coupled Arrays.- 6.3.1 Resonant Optical-Wave Coupling Model.- 6.3.2 Transverse and Lateral Structures of Antiguided Arrays.- 6.3.3 Basic Modal Characteristics of Antiguided Laser Arrays.- 6.3.4 Rigorous Modeling of Structural Tolerances for Antiguided Laser Arrays.- 6.3.5 Above-Threshold Mode Stability of an Antiguided Array.- 7. Surface-Emitting Diode-Laser Arrays.- 7.1 Fundamentals of GSE Diode-Laser Arrays.- 7.1.1 Grating Feedback and Output-Coupling Elements.- 7.1.2 Principles of GSE Laser Array Design and Operation.- 7.2 Mode Discrimination Properties of GSE Laser Arrays.- 7.2.1 Boundary-Element Model of Grating-Coupled Waveguides.- 7.2.2 Coupled-Wave Model of GSE Laser Arrays.- 7.2.3 Network Models of GSE Laser Arrays.- 7.2.4 Network Analysis of Ring-Configured GSE Laser Array.- 7.3 Vertical-Cavity Surface-Emitting Laser Arrays.- 7.3.1 Scaling of Two-Dimensional VCSEL Arrays.- 7.3.2 Modal Properties of Two-Dimensional VCSEL Arrays.- 8. Master-Oscillator Power-Amplifier Diode Lasers.- 8.1 Edge-Emitting MOPAs.- 8.1.1 Semiconductor-Diode Amplifier Arrays.- 8.1.2 Discrete Broad-Area MOPAs.- 8.1.3 Monolithic Edge-Emitting MOPAs.- 8.1.4 Tapered MOPAs.- 8.2 Grating-Coupled Surface-Emitting MOPAs.- 8.2.1 Cascaded Grating-Coupled Surface-Emitting MOPAs.- 8.2.2 Active Grating-Coupled MOPAs: Operating Principles.- 8.2.3 Active Grating-Coupled MOPAs: Performance Characteristics.- References.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.